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Background

An efficient way to classify mathematical structures is through answering
the following questions:

To what extent can a structure M be described by a formal language
L?

What do we need to describe M uniquely up to isomorphism?



Definition A structure M in a language L is said to have theory
categorical in cardinality A\ if there is exactly one, up to isomorphism,

structure of cardinality A\ satisfying the
L-description [the theory Th(IM)] of M.
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categorical in cardinality A\ if there is exactly one, up to isomorphism,

structure of cardinality A\ satisfying the
L-description [the theory Th(IM)] of M.

Uncountable structures with categorical theories = logically perfect
structures.



Basic examples of 'perfect’ structures:
(1) Trivial structures (the language allows the equality only)

(2) Linear structures: Abelian divisible torsion-free groups;

Vector spaces over a given division ring

Commutative one-dimensional algebraic groups (with or without “com-
plex multiplication”;

(3) Algebraically closed fields (+, -, =)



One can construct more complicated structures over the basic ones pre-
serving the property of categoricity, e.g.

Algebraic groups
GL(n,C),PGL(n,C), ...



One can construct more complicated structures over the basic ones pre-
serving the property of categoricity, e.g.

Algebraic groups
GL(n,C),PGL(n,C), ...

More generally, complex algebraic varieties IV C C" equipped with
algebraic relations ( given by polynomial equations

in n X m variables).

C can be replaced by any algebraically closed field.



Dimension notions and pregeometries on logically perfect
structures

for finite X € M :

(1) Trivial pregeometry: the number of points in X,
the number of connected components in the subgraph con-
taining X,

(2) Linear structures:
the linear dimension lin.d X of (X)

(3) Algebraically closed fields:
the transcendence degree tr.d (X) over the prime subfield.
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for finite X € M :

(1) Trivial pregeometry: the number of points in X,
the number of connected components in the subgraph con-
taining X,

(2) Linear structures:
the linear dimension lin.d X of (X)

(3) Algebraically closed fields:
the transcendence degree tr.d (X) over the prime subfield.

Dual notion: the dimension of an algebraic variety V' over F

dimV = max{ tr.d p(z1,...,2,) | (z1,...,2,) € V}.



Three basic geometries of stability theory:
(1) Trivial geometry
(2) Linear geometry
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YES, for some key classes (1993-2007).

NO in general (E.Hrushovski, 1989)
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The analysis of 'NO’,

Hrushovski’s construction of new structures

Given a class of structures M with a dimension notions dy, and dy we
want to consider a new function f on M.
On (M, f) introduce a predimension

0(X) = di(X UT(X)) — da(X).
Consider structures (MM, f) which satisfy the Hrushovski inequality:

0(X) > 0 for any finite X C M.

Amalgamate all such structures to get a universal and homogeneous
structure in the class.

The resulting structure (M,f) will be homogeneous and have a good
dimension theory.



Are Hrushovski structures mathematical pathologies?

Observation (1996): If M is a field and we want f = ex to be a group
homomorphism
ex(x1 + x9) = ex(z1) - ex(x2)

then the corresponding predimension must be

(X)) =tr.d(X Uex(X)) —lind (X) > 0.



Are Hrushovski structures mathematical pathologies?

Observation (1996): If M is a field and we want f = ex to be a group
homomorphism
ex(x1 + x9) = ex(z1) - ex(x2)

then the corresponding predimension must be
(X)) =tr.d(X Uex(X)) —lind (X) > 0.

The Hrushovski inequality, in the case of the complex numbers and ex =
exp, is equivalent to

Xz X
tr.d (zy,...,x,, e ..., €") >n

assuming that x1, ..., x, are linearly independent (the Schanuel con-
jecture).



Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: F. =
(F,+,-,ex) satisfying

EXP1L: ex(x1 4+ z2) = ex(1) - ex(x2)
EXP2: kerex = wZ

Consider the subclass satisfying the Schanuel condition
SCH: tr.d(X Uex(X)) —lind(X) > 0.

Amalgamation process produces an algebraically-exponentially closed
field with pseudo-exponentiation, F.()\).



F.x () satisfies:
Algebraic-ezponential closedness (Existential closedness):

EC: Every system of algebraic-exponential equations which does not con-
tradict SCH must have a solution.

Countable closure property:

CC: Analytic subsets of F" of dimension 0 are countable.



Theorem (2001) Given an uncountable cardinal \, there is a unique,

up to isomorphism, algebraically closed field with pseudo-exponentiation
F. of cardinality X satisfying EXP 4+ SCH + EC + CC
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unique field with exponentiation Fo of cardinality 2%0.
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Theorem (2001) Given an uncountable cardinal \, there is a unique,

up to isomorphism, algebraically closed field with pseudo-exponentiation
F. of cardinality X satisfying EXP 4+ SCH + EC + CC

Conjecture The field of complex numbers Cey, is isomorphic to the
unique field with exponentiation Fo of cardinality 2%0.

Equivalently, Ceyp satisfies SCH + EC.

Model-theoretic geometry suggest a geometry of exponenti-
ation.



Weaker forms of Schanuel’s conjecture

SCH :  tr.d (X Uexp(X)) — mlt.rk exp X > 0
mlt.rk Y the multiplicative group rank of (Y')
lind X — 1 <mltrk exp X <lin.d X.
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lin.d g X + tr.d exp X 4+ ¢(K) — mlt.rk exp X > 0
(KCC, 0<¢K)<trdK Afinite)

tr.d exp X 4 ¢(L) — mlt.rk exp X > 0
forall X Cqy L, L =Key 4+ ...+ Ke,,

tr.dY + ¢(L) — mlt.okY >0
forall Y Cgy G

2tr.dY + c¢(a) — mltaokY >0
a ¢ RUIR, forall Y CgyexpaR, 0 < c(a) <2



Theorem(2004) The Schanuel conjecture SCH”
lind g X + tr.d exp X 4+ ¢(K) — mlt.rkk exp X >0

is first order-axiomatisable. The first order theory F¥ of raising to powers
k € K is superstable.
Given a finite X C 27K, the subgroup (ex(X)) C F* is definable in F¥.

The proof requires Mordell-Lang for the multiplicative groups of fields.
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is first order-axiomatisable. The first order theory F¥ of raising to powers
k € K is superstable.
Given a finite X C 27K, the subgroup (ex(X)) C F* is definable in F¥.

The proof requires Mordell-Lang for the multiplicative groups of fields.

Corollary Let I' be the subgroup of C* generated by aq,...,a, € C
and K be the subfield containing 112173;, L 1121731”

Assume Schanuel’s conjecture SCH®. Then, for every W C C™ de-
finable in CH.

I NW equals a finite union of cosets of subgroups I'" N'T', some tori

T.




Wilkie’s Theorem SCH”® holds for K C R generated by generic
tuples of real numbers.



Nonstandard numbers

C<*C, Zz=<"Z, Q=<7Q,...

Correspondingly, it makes sense in *F to 'raise’ to nonstandard integer
powers and have the predimension for X C *C,

d(X) = lin.d+@X + tr.d exp X — mlt.rk exp X.
The relative predimension with respect to C :

O(X/C) =min{d(X UA)—6(A): Ay, C,
A large enough}.



Theorem (with M.Bays, 2006) TFAE:

(i) (CIT) Given W C C", an irreducible algebraic variety over Q, there is
finite collection 7(W) of tori in C" such that for any torus 77 C C" and
an atypical irreducible component A C W NT

(that is dim A > dim W +dimT —n )

there is T € 7(W) such that A C W N T,

(ii) for all X Cg, *C, §(X/C) > 0;
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(i) (CIT) Given W C C", an irreducible algebraic variety over Q, there is
finite collection 7(W) of tori in C" such that for any torus 77 C C" and
an atypical irreducible component A C W NT

(that is dim A > dim W +dimT —n )

there is T € 7(W) such that A C W N T,

(ii) for all X Cg, *C, §(X/C) > 0;

(iii) (Bombieri - Masser - Zanier’s Conjecture) Given W C C", an irre-
ducible algebraic variety over C, there is finite collection 7(W') of tori in
C" such that for any torus 7' C C" and an atypical irreducible component

ACWNT thereis T € 7(W) such that A C W N'T.

(iv)
lin.d «@(X/2miZ) + tr.d (exp X/C) — mlt.rk exp X > 0
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(ii) the geometry of exp L is linear (locally modular) in the field C.
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cn.

Corollary CIT implies Mordell-Lang.
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B.Poizat (2000) used the condition on
G < F*
(k+1)-tr.dY —k-mltakY >0, YV Cs, G

mtdim F
k+1

to define a G of model theoretic dimension equal to

Theorem (2002) The weak Schanuel conjecture
2-tr.dY —mltorkY >0, Y Cgy, exp(aR)

implies
mtdim R = —mtdiQm ¢
Proposition Assume Schanuel’s conjecture for the p-adic exponentia-
tion.
Then, for every k there is « € leg, ||, = 1, such that

% ~tr.dY —mlt.rkY >0,

for all Y Cgy exp(apZ,).

Corollary mtdim Z, = 0, if defined.
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Theorem(2001) CIT+SCH’ implies
Uniform SCH”: Given an algebraic subvariety W C C** over Q with
dim W < n there is a positive integer N such that

xr x
(X1,...,xp,€ ... e e W =

\/ exp(mizy + ... +muz,) =1 & \/mi £ 0.

[m;| <N

Theorem (2004, with J.Kirby)

SCH(Rexp) is uniform. That is SCH(Reyp) is equivalent to:

Given an algebraic subvariety W C R*" over Q with dim W < n there
1S a positive integer N such that

X T
(x1,..., 2,1, ... ) €W =

\/ miri+...+mur, =0& \/m,#O

|m;| <N

The proof is based on the analytic cell decomposition result (T.L.Loi)
for Reyp (which follows from Wilkie’s Theorem).



The Welerstrass function

The case of the Weierstrass function py(z), for a fixed lattice is very
similar.
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The ’full’ Welerstrass function

The Weierstrass function p(7, x) as a function of two variables

1 1 1
p(T,LC)ZE—l— Z [m—y]

Ae(r, 1)\(0)
For every 7 € H define the field k, as Q or Q(i,), if the corresponding
elliptic curve has complex multiplication 2.

The corresponding "Schanuel conjecture’ must take into account the trivial
geometry on ‘H (with the action of SLy(Q)) and the linear geometry along
each elliptic curve. Thus it takes the form:
given 1y, ..., 7, € Hand x1,...,x, € C,

trd({n}, {z;}, {p(r,z)}) — D lindy {z;} >0

7;/SL2(Q)



