On transcendental number theory, classical analytic functions and Diophantine geometry

B. Zilber

University of Oxford

http://www.maths.ox.ac.uk/~zilber/

Background

An efficient way to classify mathematical structures is through answering the following questions:

To what extent can a structure \mathbf{M} be described by a formal language L?

What do we need to describe M uniquely up to isomorphism?

Definition A structure \mathbf{M} in a language L is said to have theory categorical in cardinality λ if there is exactly one, up to isomorphism, structure of cardinality λ satisfying the L-description [the theory $\mathrm{Th}(\mathbf{M})$] of \mathbf{M} .

Definition A structure \mathbf{M} in a language L is said to have theory **categorical in cardinality** λ if there is exactly one, up to isomorphism, structure of cardinality λ satisfying the L-description [the theory $\mathrm{Th}(\mathbf{M})$] of \mathbf{M} .

Uncountable structures with categorical theories = **logically perfect** structures.

Basic examples of 'perfect' structures:

- (1) **Trivial** structures (the language allows the equality only)
- (2) **Linear** structures: Abelian divisible torsion-free groups; Vector spaces over a given division ring Commutative one-dimensional algebraic groups (with or without "complex multiplication";
- (3) Algebraically closed fields $(+,\cdot,=)$

One can construct more complicated structures over the basic ones preserving the property of categoricity, e.g.

Algebraic groups

$$\mathrm{GL}(n,\mathbb{C}),\mathrm{PGL}(n,\mathbb{C}),\ldots$$

One can construct more complicated structures over the basic ones preserving the property of categoricity, e.g.

Algebraic groups

$$\mathrm{GL}(n,\mathbb{C}),\mathrm{PGL}(n,\mathbb{C}),\ldots$$

More generally, complex algebraic varieties $V \subseteq \mathbb{C}^n$ equipped with algebraic relations (given by polynomial equations

$$p(\bar{x}_1,\ldots,\bar{x}_m)=0$$

in $n \times m$ variables).

 \mathbb{C} can be replaced by any algebraically closed field.

Dimension notions and pregeometries on logically perfect structures

for finite $X \subset \mathbf{M}$:

- (1) Trivial pregeometry: the number of points in X, the number of connected components in the subgraph containing X,
- (2) Linear structures: **the linear dimension** $\lim dX$ of $\langle X \rangle$
- (3) Algebraically closed fields: **the transcendence degree** $\operatorname{tr.d}(X)$ over the prime subfield.

Dimension notions and pregeometries on logically perfect structures

for finite $X \subset \mathbf{M}$:

- (1) Trivial pregeometry: the number of points in X, the number of connected components in the subgraph containing X,
- (2) Linear structures: **the linear dimension** lin.d X of $\langle X \rangle$
- (3) Algebraically closed fields: **the transcendence degree** $\operatorname{tr.d}(X)$ over the prime subfield.

Dual notion: the **dimension of an algebraic variety** V over F $\dim V = \max\{ \operatorname{tr.d}_F(x_1, \dots, x_n) \mid (x_1, \dots, x_n) \in V \}.$

Three basic geometries of stability theory:

- (1) Trivial geometry
- (2) Linear geometry
- (3) Algebraic geometry.

Three basic geometries of stability theory:

- (1) Trivial geometry
- (2) Linear geometry
- (3) Algebraic geometry.

Is any 'logically perfect' structure reducible to basic geometries (1) - (3)?

Three basic geometries of stability theory:

- (1) Trivial geometry
- (2) Linear geometry
- (3) Algebraic geometry.

Is any 'logically perfect' structure reducible to basic geometries (1) - (3)?

YES, for some key classes (1993-2007).

NO in general (E.Hrushovski, 1989)

Hrushovski's construction of new structures

Given a class of structures \mathbf{M} with a dimension notions d_1 , and d_2 we want to consider a *new function* f on \mathbf{M} .

Hrushovski's construction of new structures

Given a class of structures \mathbf{M} with a dimension notions d_1 , and d_2 we want to consider a *new function* f on \mathbf{M} .

On (\mathbf{M}, f) introduce a **predimension**

$$\delta(X) = d_1(X \cup f(X)) - d_2(X).$$

Consider structures (M, f) which satisfy the **Hrushovski inequality**:

$$\delta(X) \geq 0$$
 for any finite $X \subset \mathbf{M}$.

Hrushovski's construction of new structures

Given a class of structures \mathbf{M} with a dimension notions d_1 , and d_2 we want to consider a *new function* f on \mathbf{M} .

On (\mathbf{M}, f) introduce a **predimension**

$$\delta(X) = d_1(X \cup f(X)) - d_2(X).$$

Consider structures (\mathbf{M}, f) which satisfy the **Hrushovski inequality**:

$$\delta(X) \geq 0$$
 for any finite $X \subset \mathbf{M}$.

Amalgamate all such structures to get a universal and homogeneous structure in the class.

The resulting structure $(\tilde{\mathbf{M}}, f)$ will be homogeneous and have a good dimension theory.

Are Hrushovski structures mathematical pathologies?

Observation (1996): If \mathbf{M} is a field and we want f=ex to be a group homomorphism

$$ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$$

then the corresponding predimension must be

$$\delta(X) = \operatorname{tr.d}(X \cup \operatorname{ex}(X)) - \operatorname{lin.d}(X) \ge 0.$$

Are Hrushovski structures mathematical pathologies?

Observation (1996): If \mathbf{M} is a field and we want f = ex to be a group homomorphism

$$ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$$

then the corresponding predimension must be

$$\delta(X) = \operatorname{tr.d}(X \cup \operatorname{ex}(X)) - \operatorname{lin.d}(X) \ge 0.$$

The Hrushovski inequality, in the case of the complex numbers and ex = exp, is equivalent to

$$\operatorname{tr.d}(x_1, \dots, x_n, e^{x_1}, \dots, e^{x_n}) \ge n$$

assuming that x_1, \ldots, x_n are linearly independent (the Schanuel conjecture).

Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: $\mathbf{F}_{\text{ex}} = (F, +, \cdot, \text{ex})$ satisfying

EXP1:
$$ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$$

EXP2:
$$\ker \exp = \omega \mathbb{Z}$$

Consider the subclass satisfying the Schanuel condition

$$SCH: \operatorname{tr.d}(X \cup \operatorname{ex}(X)) - \operatorname{lin.d}(X) \ge 0.$$

Amalgamation process produces an algebraically-exponentially closed field with pseudo-exponentiation, $\mathbf{F}_{\mathrm{ex}}(\lambda)$.

 $\mathbf{F}_{\mathrm{ex}}(\lambda)$ satisfies:

 $Algebraic\text{-}exponential\ closedness\ (\textbf{Existential\ closedness}):$

EC: Every system of algebraic-exponential equations which does not contradict SCH must have a solution.

Countable closure property:

CC: Analytic subsets of \mathbf{F}^n of dimension 0 are countable.

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation \mathbf{F}_{ex} of cardinality λ satisfying $\mathrm{EXP} + \mathrm{SCH} + \mathrm{EC} + \mathrm{CC}$

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation \mathbf{F}_{ex} of cardinality λ satisfying $\mathrm{EXP} + \mathrm{SCH} + \mathrm{EC} + \mathrm{CC}$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation \mathbf{F}_{ex} of cardinality 2^{\aleph_0} .

Equivalently, \mathbb{C}_{\exp} satisfies SCH + EC.

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation \mathbf{F}_{ex} of cardinality λ satisfying $\mathrm{EXP} + \mathrm{SCH} + \mathrm{EC} + \mathrm{CC}$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation \mathbf{F}_{ex} of cardinality 2^{\aleph_0} .

Equivalently, \mathbb{C}_{\exp} satisfies SCH + EC.

Model-theoretic geometry suggest a geometry of exponentiation.

SCH': $\operatorname{tr.d}(X \cup \exp(X)) - \operatorname{mlt.rk} \exp X \ge 0$ mlt.rk Y the multiplicative group rank of $\langle Y \rangle$ $\operatorname{lin.d} X - 1 \le \operatorname{mlt.rk} \exp X \le \operatorname{lin.d} X$.

$$\operatorname{tr.d} X + \operatorname{tr.d} \, \exp X - \operatorname{mlt.rk} \, \exp X \geq 0$$

$$\operatorname{tr.d} X + \operatorname{tr.d} \, \exp X - \operatorname{mlt.rk} \, \exp X \geq 0$$

$$\begin{aligned} & \lim \operatorname{d}_K X + \operatorname{tr.d} \ \exp X + c(K) - \operatorname{mlt.rk} \ \exp X \geq 0 \\ & (K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr.d} K \ \text{ finite}) \end{aligned}$$

$$\operatorname{tr.d} X + \operatorname{tr.d} \, \exp X - \operatorname{mlt.rk} \, \exp X \geq 0$$

$$\begin{aligned} & \lim \operatorname{d}_{K}X + \operatorname{tr.d} \, \exp X + c(K) - \operatorname{mlt.rk} \, \exp X \geq 0 \\ & (K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr.d} K \; \text{ finite}) \end{aligned}$$

tr.d
$$\exp X + c(L) - \text{mlt.rk } \exp X \ge 0$$

for all $X \subset_{\text{fin}} L$, $L = Ke_1 + \ldots + Ke_m$

$$\operatorname{tr.d} X + \operatorname{tr.d} \, \exp X - \operatorname{mlt.rk} \, \exp X \geq 0$$

$$\begin{aligned} & \lim_{K} X + \operatorname{tr.d} \, \exp X + c(K) - \operatorname{mlt.rk} \, \exp X \geq 0 \\ & (K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr.d} K \; \text{ finite}) \end{aligned}$$

tr.d
$$\exp X + c(L) - \text{mlt.rk} \exp X \ge 0$$

for all $X \subset_{\text{fin}} L$, $L = Ke_1 + \ldots + Ke_m$

$$\operatorname{tr.d} Y + c(L) - \operatorname{mlt.rk} Y \ge 0$$
 for all $Y \subset_{\operatorname{fin}} G$

$$\operatorname{tr.d} X + \operatorname{tr.d} \exp X - \operatorname{mlt.rk} \exp X \ge 0$$

lin.d
$$_K X$$
 + tr.d exp X + $c(K)$ - mlt.rk exp $X \ge 0$
 $(K \subset \mathbb{C}, \quad 0 \le c(K) \le \text{tr.d } K \text{ finite})$

tr.d
$$\exp X + c(L) - \text{mlt.rk } \exp X \ge 0$$

for all $X \subset_{\text{fin}} L$, $L = Ke_1 + \ldots + Ke_m$

$$\operatorname{tr.d} Y + c(L) - \operatorname{mlt.rk} Y \ge 0$$
for all $Y \subset_{\operatorname{fin}} G$

$$2\mathrm{tr.d}\,Y + c(\alpha) - \mathrm{mlt.rk}\,Y \geq 0$$

$$\alpha \notin \mathbb{R} \cup i\mathbb{R}, \ \text{for all}\ Y \subset_{\mathrm{fin}} \exp \alpha \mathbb{R}, \ 0 \leq c(\alpha) \leq 2$$

Theorem(2004) The Schanuel conjecture SCH^K :

$$\lim_{K} d_{K}X + \operatorname{tr.d} \exp X + c(K) - \operatorname{mlt.rk} \exp X \ge 0$$

is first order-axiomatisable. The first order theory \mathbf{F}^K of raising to powers $k \in K$ is superstable.

Given a finite $X \subseteq 2\pi i K$, the subgroup $\langle \operatorname{ex}(X) \rangle \subseteq \mathbf{F}^{\times}$ is definable in \mathbf{F}^{K} .

The proof requires Mordell-Lang for the multiplicative groups of fields.

Theorem(2004) The Schanuel conjecture SCH^K :

$$\lim_{K} d_{K}X + \operatorname{tr.d} \exp X + c(K) - \operatorname{mlt.rk} \exp X \ge 0$$

is first order-axiomatisable. The first order theory \mathbf{F}^K of raising to powers $k \in K$ is superstable.

Given a finite $X \subseteq 2\pi i K$, the subgroup $\langle \operatorname{ex}(X) \rangle \subseteq \mathbf{F}^{\times}$ is definable in \mathbf{F}^{K} .

The proof requires Mordell-Lang for the multiplicative groups of fields.

Corollary Let Γ be the subgroup of \mathbb{C}^* generated by $a_1, \ldots, a_n \in \mathbb{C}$ and K be the subfield containing $\frac{\ln a_1}{2\pi i}, \dots, \frac{\ln a_n}{2\pi i}$.

Assume Schanuel's conjecture SCH^K. Then, for every $W \subseteq \mathbb{C}^m$ de-

finable in \mathbb{C}^K

 $\Gamma^m \cap W$ equals a finite union of cosets of subgroups $\Gamma^m \cap T$, some tori T.

Wilkie's Theorem SCH^K holds for $K \subseteq \mathbb{R}$ generated by generic tuples of real numbers.

Nonstandard numbers

$$\mathbb{C} \prec {}^*\mathbb{C}, \quad \mathbb{Z} \prec {}^*\mathbb{Z}, \quad \mathbb{Q} \prec {}^*\mathbb{Q}, \dots$$

Correspondingly, it makes sense in ***F** to 'raise' to nonstandard integer powers and have the predimension for $X \subseteq {}^*\mathbb{C}$,

$$\delta(X) = \text{lin.d.}_{*\mathbb{Q}}X + \text{tr.d.} \exp X - \text{mlt.rk.} \exp X.$$

The **relative predimension** with respect to \mathbb{C} :

$$\delta(X/\mathbb{C}) = \min\{\delta(X \cup A) - \delta(A) : A \subseteq_{\text{fin}} \mathbb{C}, A \text{ large enough}\}.$$

Theorem (with M.Bays, 2006) TFAE:

(i) (CIT) Given $W \subseteq \mathbb{C}^n$, an irreducible algebraic variety over \mathbb{Q} , there is finite collection $\tau(W)$ of tori in \mathbb{C}^n such that for any torus $T \subseteq \mathbb{C}^n$ and an atypical irreducible component $A \subseteq W \cap T$ (that is $\dim A > \dim W + \dim T - n$) there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.

(ii) for all $X \subseteq_{\text{fin}} {}^*\mathbb{C}$, $\delta(X/\mathbb{C}) \ge 0$;

Theorem (with M.Bays, 2006) TFAE:

(i) (CIT) Given $W \subseteq \mathbb{C}^n$, an irreducible algebraic variety over \mathbb{Q} , there is finite collection $\tau(W)$ of tori in \mathbb{C}^n such that for any torus $T \subseteq \mathbb{C}^n$ and an atypical irreducible component $A \subseteq W \cap T$ (that is $\dim A > \dim W + \dim T - n$) there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.

- (ii) for all $X \subseteq_{\text{fin}} {}^*\mathbb{C}$, $\delta(X/\mathbb{C}) \ge 0$;
- (iii) (Bombieri Masser Zanier's Conjecture) Given $W \subseteq \mathbb{C}^n$, an irreducible algebraic variety over \mathbb{C} , there is finite collection $\tau(W)$ of tori in \mathbb{C}^n such that for any torus $T \subseteq \mathbb{C}^n$ and an atypical irreducible component $A \subseteq W \cap T$ there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.

(iv) $\lim_{M \to \infty} (X/2\pi i \mathbb{Z}) + \operatorname{tr.d}(\exp X/\mathbb{C}) - \operatorname{mlt.rk} \exp X \ge 0$

Consider $L\subseteq\mathbb{C}^n$ m-generated \mathbb{Q} -module. Then $L(*\mathbb{C})\subseteq *\mathbb{C}^n$ is m-generated * \mathbb{Q} -module. So,

 $\operatorname{lin.d}_{*\mathbb{Q}}(X/2\pi i\mathbb{Z}) \leq m$, for all $X \subset_{\operatorname{fin}} L(^*\mathbb{C})$.

Consider $L \subseteq \mathbb{C}^n$ m-generated \mathbb{Q} -module. Then $L(*\mathbb{C}) \subseteq *\mathbb{C}^n$ is m-generated * \mathbb{Q} -module. So,

$$\operatorname{lin.d}_{*\mathbb{Q}}(X/2\pi i\mathbb{Z}) \leq m$$
, for all $X \subset_{\operatorname{fin}} L(^*\mathbb{C})$.

Proposition The following are equivalent:

- (i) tr.d $\exp X + c(L) \text{mlt.rk } \exp X \ge 0$ for all $X \subset_{\text{fin}} L(^*\mathbb{C})$.
- (ii) the geometry of $\exp L$ is linear (locally modular) in the field \mathbb{C} .
- (iii) (Mordell-Lang) For every algebraic variety $W \subseteq \mathbb{C}^n$ over \mathbb{C} , $W \cap \exp L$ is equal to a finite union of cosets of subgroups $T \cap \exp L$, T tori in \mathbb{C}^n .

Consider $L \subseteq \mathbb{C}^n$ m-generated \mathbb{Q} -module. Then $L(*\mathbb{C}) \subseteq *\mathbb{C}^n$ is m-generated * \mathbb{Q} -module. So,

$$\lim_{x \to \infty} (X/2\pi i \mathbb{Z}) \leq m$$
, for all $X \subset_{\text{fin}} L({}^*\mathbb{C})$.

Proposition The following are equivalent:

- (i) tr.d $\exp X + c(L) \text{mlt.rk } \exp X \ge 0$ for all $X \subset_{\text{fin}} L(^*\mathbb{C})$.
- (ii) the geometry of $\exp L$ is linear (locally modular) in the field \mathbb{C} .
- (iii) (Mordell-Lang) For every algebraic variety $W \subseteq \mathbb{C}^n$ over $\mathbb{C}, W \cap \exp L$ is equal to a finite union of cosets of subgroups $T \cap \exp L$, T tori in \mathbb{C}^n .

Corollary CIT implies Mordell-Lang.

B. Poizat (2000) used the condition on $G \leq \mathbf{F}^*$

$$(k+1) \cdot \operatorname{tr.d} Y - k \cdot \operatorname{mlt.rk} Y \ge 0, \ Y \subset_{\operatorname{fin}} G$$

to define a G of model theoretic dimension equal to $\frac{\text{mtdim } \mathbf{F}}{k+1}$.

B. Poizat (2000) used the condition on $G \leq \mathbf{F}^*$

$$(k+1)\cdot\operatorname{tr.d} Y-k\cdot\operatorname{mlt.rk} Y\geq 0,\ Y\subset_{\operatorname{fin}} G$$

to define a G of model theoretic dimension equal to $\frac{\text{mtdim } \mathbf{F}}{k+1}$.

Theorem (2002) The weak Schanuel conjecture

$$2 \cdot \operatorname{tr.d} Y - \operatorname{mlt.rk} Y \ge 0, \quad Y \subset_{\operatorname{fin}} \exp(\alpha \mathbb{R})$$

implies

$$\operatorname{mtdim} \mathbb{R} = \frac{\operatorname{mtdim} \mathbb{C}}{2}$$

B.Poizat (2000) used the condition on $G \leq \mathbf{F}^*$

$$(k+1) \cdot \operatorname{tr.d} Y - k \cdot \operatorname{mlt.rk} Y \ge 0, \ Y \subset_{\operatorname{fin}} G$$

to define a G of model theoretic dimension equal to $\frac{\text{mtdim } \mathbf{F}}{k+1}$.

Theorem (2002) The weak Schanuel conjecture

$$2 \cdot \operatorname{tr.d} Y - \operatorname{mlt.rk} Y \ge 0, \quad Y \subset_{\operatorname{fin}} \exp(\alpha \mathbb{R})$$

implies

$$\operatorname{mtdim} \mathbb{R} = \frac{\operatorname{mtdim} \mathbb{C}}{2}$$

Proposition Assume Schanuel's conjecture for the p-adic exponentiation.

Then, for every k there is $\alpha \in \mathbb{Q}_p^{\text{alg}}$, $|\alpha|_p = 1$, such that

$$\frac{k+1}{k} \cdot \operatorname{tr.d} Y - \operatorname{mlt.rk} Y \ge 0,$$

for all $Y \subset_{\text{fin}} \exp(\alpha p \mathbb{Z}_p)$.

Corollary mtdim $\mathbb{Z}_p = 0$, if defined.

The Uniform Schanuel conjecture

Theorem(2001) CIT+SCH' implies

Uniform SCH': Given an algebraic subvariety $W \subseteq \mathbb{C}^{2n}$ over \mathbb{Q} with $\dim W < n$ there is a positive integer N such that

$$\langle x_1, \dots, x_n, e^{x_1}, \dots, e^{x_n} \rangle \in W \Rightarrow$$

$$\bigvee_{|m_i| \le N} \exp(m_1 x_1 + \dots + m_n x_n) = 1 \& \bigvee_i m_i \ne 0.$$

The Uniform Schanuel conjecture

Theorem(2001) CIT+SCH' implies

Uniform SCH': Given an algebraic subvariety $W \subseteq \mathbb{C}^{2n}$ over \mathbb{Q} with $\dim W < n$ there is a positive integer N such that

$$\langle x_1, \dots, x_n, e^{x_1}, \dots, e^{x_n} \rangle \in W \Rightarrow$$

$$\bigvee_{|m_i| \le N} \exp(m_1 x_1 + \dots + m_n x_n) = 1 \& \bigvee_i m_i \ne 0.$$

Theorem (2004, with J.Kirby)

 $SCH(\mathbb{R}_{exp})$ is uniform. That is $SCH(\mathbb{R}_{exp})$ is equivalent to: Given an algebraic subvariety $W \subseteq \mathbb{R}^{2n}$ over \mathbb{Q} with $\dim W < n$ there is a positive integer N such that

$$\langle x_1, \dots, x_n, e^{x_1}, \dots, e^{x_n} \rangle \in W \Rightarrow$$

$$\bigvee_{|m_i| \le N} m_1 x_1 + \dots + m_n x_n = 0 \& \bigvee_i m_i \ne 0.$$

The proof is based on the analytic cell decomposition result (T.L.Loi) for \mathbb{R}_{exp} (which follows from Wilkie's Theorem).

The Weierstrass function

The case of the Weierstrass function $\mathbf{p}_{\omega}(x)$, for a fixed lattice is very similar.

The 'full' Weierstrass function

The Weierstrass function $\mathbf{p}(\tau, x)$ as a function of two variables

$$\mathbf{p}(\tau, x) = \frac{1}{x^2} + \sum_{\lambda \in \langle \tau, 1 \rangle \setminus (0)} \left[\frac{1}{(x - \lambda)^2} - \frac{1}{\lambda^2} \right].$$

The 'full' Weierstrass function

The Weierstrass function $\mathbf{p}(\tau, x)$ as a function of two variables

$$\mathbf{p}(\tau, x) = \frac{1}{x^2} + \sum_{\lambda \in \langle \tau, 1 \rangle \setminus (0)} \left[\frac{1}{(x - \lambda)^2} - \frac{1}{\lambda^2} \right].$$

For every $\tau \in \mathcal{H}$ define the field k_{τ} as \mathbb{Q} or $\mathbb{Q}(i_{\tau})$, if the corresponding elliptic curve has complex multiplication i_{τ} .

The 'full' Weierstrass function

The Weierstrass function $\mathbf{p}(\tau, x)$ as a function of two variables

$$\mathbf{p}(\tau, x) = \frac{1}{x^2} + \sum_{\lambda \in \langle \tau, 1 \rangle \setminus (0)} \left[\frac{1}{(x - \lambda)^2} - \frac{1}{\lambda^2} \right].$$

For every $\tau \in \mathcal{H}$ define the field k_{τ} as \mathbb{Q} or $\mathbb{Q}(i_{\tau})$, if the corresponding elliptic curve has complex multiplication i_{τ} .

The corresponding 'Schanuel conjecture' must take into account the trivial geometry on \mathcal{H} (with the action of $\mathrm{SL}_2(\mathbb{Q})$) and the linear geometry along each elliptic curve. Thus it takes the form:

given
$$\tau_1, \ldots, \tau_m \in \mathcal{H}$$
 and $x_1, \ldots, x_n \in \mathbb{C}$,

tr.d
$$(\{\tau_i\}, \{x_j\}, \{\mathbf{p}(\tau_i, x_j)\}) - \sum_{\tau_i/\text{SL}_2(\mathbb{Q})} \text{lin.d } k_{\tau_i}\{x_j\} \ge 0$$