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Background

An efficient way to classify mathematical structures is through answering

the following questions:

To what extent can a structure M be described by a formal language

L?

What do we need to describe M uniquely up to isomorphism?



Definition A structure M in a language L is said to have theory

categorical in cardinality λ if there is exactly one, up to isomorphism,

structure of cardinality λ satisfying the

L-description [the theory Th(M)] of M.



Definition A structure M in a language L is said to have theory

categorical in cardinality λ if there is exactly one, up to isomorphism,

structure of cardinality λ satisfying the

L-description [the theory Th(M)] of M.

Uncountable structures with categorical theories = logically perfect

structures.



Basic examples of ’perfect’ structures:

(1) Trivial structures (the language allows the equality only)

(2) Linear structures: Abelian divisible torsion-free groups;

Vector spaces over a given division ring

Commutative one-dimensional algebraic groups (with or without “com-

plex multiplication”;

(3) Algebraically closed fields (+, ·, =)



One can construct more complicated structures over the basic ones pre-

serving the property of categoricity, e.g.

Algebraic groups

GL(n, C), PGL(n, C), ...



One can construct more complicated structures over the basic ones pre-

serving the property of categoricity, e.g.

Algebraic groups

GL(n, C), PGL(n, C), ...

More generally, complex algebraic varieties V ⊆ Cn equipped with

algebraic relations ( given by polynomial equations

p(x̄1, . . . , x̄m) = 0

in n × m variables).

C can be replaced by any algebraically closed field.



Dimension notions and pregeometries on logically perfect

structures

for finite X ⊂ M :

(1) Trivial pregeometry: the number of points in X,

the number of connected components in the subgraph con-

taining X,

(2) Linear structures:

the linear dimension lin.d X of 〈X〉

(3) Algebraically closed fields:

the transcendence degree tr.d (X) over the prime subfield.
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(1) Trivial pregeometry: the number of points in X,
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taining X,

(2) Linear structures:

the linear dimension lin.d X of 〈X〉

(3) Algebraically closed fields:

the transcendence degree tr.d (X) over the prime subfield.

Dual notion: the dimension of an algebraic variety V over F

dim V = max{ tr.d F (x1, . . . , xn) | (x1, . . . , xn) ∈ V }.
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YES, for some key classes (1993-2007).

NO in general (E.Hrushovski, 1989)
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The analysis of ’NO’.

Hrushovski’s construction of new structures

Given a class of structures M with a dimension notions d1, and d2 we

want to consider a new function f on M.

On (M, f) introduce a predimension

δ(X) = d1(X ∪ f(X)) − d2(X).

Consider structures (M, f) which satisfy the Hrushovski inequality:

δ(X) ≥ 0 for any finite X ⊂ M.

Amalgamate all such structures to get a universal and homogeneous

structure in the class.

The resulting structure (M̃, f) will be homogeneous and have a good

dimension theory.



Are Hrushovski structures mathematical pathologies?

Observation (1996): If M is a field and we want f = ex to be a group

homomorphism

ex(x1 + x2) = ex(x1) · ex(x2)

then the corresponding predimension must be

δ(X) = tr.d (X ∪ ex(X)) − lin.d (X) ≥ 0.



Are Hrushovski structures mathematical pathologies?

Observation (1996): If M is a field and we want f = ex to be a group

homomorphism

ex(x1 + x2) = ex(x1) · ex(x2)

then the corresponding predimension must be

δ(X) = tr.d (X ∪ ex(X)) − lin.d (X) ≥ 0.

The Hrushovski inequality, in the case of the complex numbers and ex =

exp, is equivalent to

tr.d (x1, . . . , xn, e
x1, . . . , exn) ≥ n

assuming that x1, . . . , xn are linearly independent (the Schanuel con-

jecture).



Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: Fex =

(F, +, ·, ex) satisfying

EXP1: ex(x1 + x2) = ex(x1) · ex(x2)

EXP2: ker ex = ωZ

Consider the subclass satisfying the Schanuel condition

SCH : tr.d (X ∪ ex(X)) − lin.d (X) ≥ 0.

Amalgamation process produces an algebraically-exponentially closed

field with pseudo-exponentiation, Fex(λ).



Fex(λ) satisfies:

Algebraic-exponential closedness (Existential closedness):

EC: Every system of algebraic-exponential equations which does not con-

tradict SCH must have a solution.

Countable closure property:

CC: Analytic subsets of Fn of dimension 0 are countable.



Theorem (2001) Given an uncountable cardinal λ, there is a unique,

up to isomorphism, algebraically closed field with pseudo-exponentiation

Fex of cardinality λ satisfying EXP + SCH + EC + CC
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Theorem (2001) Given an uncountable cardinal λ, there is a unique,

up to isomorphism, algebraically closed field with pseudo-exponentiation

Fex of cardinality λ satisfying EXP + SCH + EC + CC

Conjecture The field of complex numbers Cexp is isomorphic to the

unique field with exponentiation Fex of cardinality 2ℵ0.

Equivalently, Cexp satisfies SCH + EC.

Model-theoretic geometry suggest a geometry of exponenti-

ation.



Weaker forms of Schanuel’s conjecture

SCH′ : tr.d (X ∪ exp(X)) − mlt.rk exp X ≥ 0

mlt.rk Y the multiplicative group rank of 〈Y 〉

lin.d X − 1 ≤ mlt.rk exp X ≤ lin.d X.
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tr.d X + tr.d exp X − mlt.rk exp X ≥ 0

lin.d KX + tr.d exp X + c(K) − mlt.rk exp X ≥ 0

(K ⊂ C, 0 ≤ c(K) ≤ tr.d K finite)

tr.d exp X + c(L) − mlt.rk exp X ≥ 0

for all X ⊂fin L, L = Ke1 + . . . + Kem

tr.d Y + c(L) − mlt.rk Y ≥ 0

for all Y ⊂fin G

2tr.d Y + c(α) − mlt.rk Y ≥ 0

α /∈ R ∪ iR, for all Y ⊂fin exp αR, 0 ≤ c(α) ≤ 2



Theorem(2004) The Schanuel conjecture SCHK :

lin.d KX + tr.d exp X + c(K) − mlt.rk exp X ≥ 0

is first order-axiomatisable. The first order theory FK of raising to powers

k ∈ K is superstable.

Given a finite X ⊆ 2πiK, the subgroup 〈ex(X)〉 ⊆ F× is definable in FK.

The proof requires Mordell-Lang for the multiplicative groups of fields.
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is first order-axiomatisable. The first order theory FK of raising to powers

k ∈ K is superstable.

Given a finite X ⊆ 2πiK, the subgroup 〈ex(X)〉 ⊆ F× is definable in FK.

The proof requires Mordell-Lang for the multiplicative groups of fields.

Corollary Let Γ be the subgroup of C∗ generated by a1, . . . , an ∈ C

and K be the subfield containing ln a1

2πi , . . . , ln an

2πi .

Assume Schanuel’s conjecture SCHK. Then, for every W ⊆ Cm de-

finable in CK,

Γm∩W equals a finite union of cosets of subgroups Γm∩T, some tori

T.



Wilkie’s Theorem SCHK holds for K ⊆ R generated by generic

tuples of real numbers.



Nonstandard numbers

C ≺ ∗C, Z ≺ ∗Z, Q ≺ ∗Q, . . .

Correspondingly, it makes sense in ∗F to ’raise’ to nonstandard integer

powers and have the predimension for X ⊆ ∗C,

δ(X) = lin.d ∗QX + tr.d exp X − mlt.rk exp X.

The relative predimension with respect to C :

δ(X/C) = min{δ(X ∪ A) − δ(A) : A ⊆fin C,

A large enough}.



Theorem (with M.Bays, 2006) TFAE:

(i) (CIT) Given W ⊆ Cn, an irreducible algebraic variety over Q, there is

finite collection τ (W ) of tori in Cn such that for any torus T ⊆ Cn and

an atypical irreducible component A ⊆ W ∩ T

( that is dim A > dim W + dim T − n )

there is T ∈ τ (W ) such that A ⊆ W ∩ T.

(ii) for all X ⊆fin
∗C, δ(X/C) ≥ 0;
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(iii) (Bombieri - Masser - Zanier’s Conjecture) Given W ⊆ Cn, an irre-

ducible algebraic variety over C, there is finite collection τ (W ) of tori in

Cn such that for any torus T ⊆ Cn and an atypical irreducible component

A ⊆ W ∩ T there is T ∈ τ (W ) such that A ⊆ W ∩ T.

(iv)

lin.d ∗Q(X/2πiZ) + tr.d (exp X/C) − mlt.rk exp X ≥ 0
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(i) tr.d exp X + c(L) − mlt.rk exp X ≥ 0

for all X ⊂fin L(∗C).

(ii) the geometry of exp L is linear (locally modular) in the field C.

(iii) (Mordell-Lang) For every algebraic variety W ⊆ Cn over C, W ∩

exp L is equal to a finite union of cosets of subgroups T ∩ exp L, T tori in

Cn.

Corollary CIT implies Mordell-Lang.
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B.Poizat (2000) used the condition on

G ≤ F∗

(k + 1) · tr.d Y − k · mlt.rk Y ≥ 0, Y ⊂fin G

to define a G of model theoretic dimension equal to mtdimF
k+1 .

Theorem (2002) The weak Schanuel conjecture

2 · tr.d Y − mlt.rk Y ≥ 0, Y ⊂fin exp(αR)

implies

mtdim R =
mtdim C

2
Proposition Assume Schanuel’s conjecture for the p-adic exponentia-

tion.

Then, for every k there is α ∈ Qalg
p , |α|p = 1, such that

k + 1

k
· tr.d Y − mlt.rk Y ≥ 0,

for all Y ⊂fin exp(αpZp).

Corollary mtdim Zp = 0, if defined.



The Uniform Schanuel conjecture

Theorem(2001) CIT+SCH′ implies

Uniform SCH′: Given an algebraic subvariety W ⊆ C2n over Q with

dim W < n there is a positive integer N such that

〈x1, . . . , xn, e
x1, . . . , exn〉 ∈ W ⇒

∨

|mi|≤N

exp(m1x1 + . . . + mnxn) = 1 &
∨

i

mi 6= 0.
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dim W < n there is a positive integer N such that
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Theorem (2004, with J.Kirby)

SCH(Rexp) is uniform. That is SCH(Rexp) is equivalent to:

Given an algebraic subvariety W ⊆ R2n over Q with dim W < n there

is a positive integer N such that

〈x1, . . . , xn, e
x1, . . . , exn〉 ∈ W ⇒

∨

|mi|≤N

m1x1 + . . . + mnxn = 0 &
∨

i

mi 6= 0.

The proof is based on the analytic cell decomposition result (T.L.Loi)

for Rexp (which follows from Wilkie’s Theorem).



The Weierstrass function

The case of the Weierstrass function pω(x), for a fixed lattice is very

similar.
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The Weierstrass function p(τ, x) as a function of two variables

p(τ, x) =
1

x2
+

∑

λ∈〈τ, 1〉\(0)

[
1

(x − λ)2
−

1

λ2
].

For every τ ∈ H define the field kτ as Q or Q(iτ ), if the corresponding

elliptic curve has complex multiplication iτ .

The corresponding ’Schanuel conjecture’ must take into account the trivial

geometry on H (with the action of SL2(Q)) and the linear geometry along

each elliptic curve. Thus it takes the form:

given τ1, . . . , τm ∈ H and x1, . . . , xn ∈ C,

tr.d ({τi}, {xj}, {p(τi, xj)}) −
∑

τi/SL2(Q)

lin.d kτi
{xj} ≥ 0


