Optimality Conditions for Nonlinear Optimisation

Lecture 7, Numerical Linear Algebra and Optimisation
Oxford University Computing Laboratory, MT 2007
Dr Raphael Hauser (hauser@comlab.ox.ac.uk)
What is a Continuous Optimisation Problem?

Unconstrained minimization:

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

where the objective function \(f : \mathbb{R}^n \to \mathbb{R} \) is sufficiently smooth (often \(C^2 \) or \(C^2 \) with Lipschitz continuous second derivatives).

Equality constrained minimization:

\[
\min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } c(x) = 0,
\]

where the equality constraints \(c : \mathbb{R}^n \to \mathbb{R}^m \), are defined by sufficiently smooth functions, and \(m \leq n \).
Inequality constrained minimization:

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

s.t. \(c_I(x) \geq 0, \quad c_E(x) = 0, \)

where \(c_I : \mathbb{R}^n \to \mathbb{R}^{m_I} \) and \(c_E : \mathbb{R}^n \to \mathbb{R}^{m_E} \) are sufficiently smooth functions, \(m_E \leq n \), and \(m_I \) may be larger than \(n \).

We also write \(c = \begin{bmatrix} c_I \\ c_E \end{bmatrix} \).
Discrete Optimisation

Combinatorial Optimisation
Integer Programming
Mixed Integer Programming
NLP with integrality constraints

Continuous Optimisation

Linear Programming

Quadratic Programming
Nonlinear Programming
Conic Programming
Semidefinite Programming
Application Areas:

- minimum energy problems
- structural design problems
- traffic equilibrium models
- production scheduling problems
- portfolio selection
- parameter determination in financial markets
- hydro-electric power scheduling
- gas production models
- computer tomography (image reconstruction)
- efficient models of alternative energy sources
- etc. etc.
Example 1 (Optimising a Gas Pipeline Network).

- Given is the production rate d_i of gas at each node i ($d_i < 0$ corresponds to consumption).
• Decision variables

 - p_i the pressure at node i,
 - q_{ij} the flow rate between nodes i and j,
 - $z_j = 1$ if pumping station j is switched on, $z_j = 0$ otherwise.

• Constraints

 - $\sum_{k \neq i} q_{ki} + d_i = \sum_{j \neq i} q_{ij}$ (conservation of gas),
 - $p^2_k = p^2_i + \kappa_{ki}q_{ki}^{2.8359}$ for all k, i connected via a pipe (pipe equations),
 \[A^T_1 p^2 + Kq^{2.8359} = 0 \]
 nonlinear, sparse structured system of equations,
 - $q_{ij} - q_{jk} + z_j \cdot c_j(p_i, q_{ij}, p_k, q_{jk}) \geq 0$ for all nodes i, k connected via compressors j (compressor constraints),
 \[A^T_2 q + z \cdot c(p, q) \geq 0, \]
 nonlinear, sparse structured system of inequalities with binary variables,
- $p_{\text{min}} \leq p \leq p_{\text{max}}$, $q_{\text{min}} \leq q \leq q_{\text{max}}$ (bound constraints).

- **Objectives**
 - minimise sum of pressures,
 - or minimise compressor fuel costs,

- **Statistics of the British Gas National Transmission System**
 - 199 nodes
 - 196 pipes
 - 21 machines
 - for steady state problem, ≈ 400 variables,
 - for 24-hour variable demand problem with 10 minute discretization, $\approx 58,000$ variables.

Problem to be solved in real time.
This problem is typical of real-world, large-scale applications

- simple bounds
- linear constraints
- nonlinear constraints
- structure
- global solution “required”
- integer variables
- discretisation
Notation and Basic Tools

\[g(x) = \nabla f(x) = [D_x f(x)]^T, \quad \text{the gradient of } f, \]
\[H(x) = D_{xx} f(x), \quad \text{the Hessian of } f, \]
\[a_i(x) = \nabla c_i(x), \quad \text{the gradient of the } i\text{-th constraint function}, \]
\[H_i(x) = D_{xx} c_i(x), \quad \text{the Hessian of the } i\text{-th constraint function}, \]
\[A(x) = D_x c(x) = [a_1(x) \ldots a_m(x)]^T, \quad \text{the Jacobian of } c, \]
\[\ell(x, y) = f(x) - y^T c(x), \quad \text{the Lagrangian function}, \]
\[H(x, y) = D_{xx} \ell(x, y) = H(x) - \sum_{i=1}^m y_i H_i(x), \quad \text{the } x\text{-Hessian of } \ell. \]

The variables \(y \) that appear in \(\ell \) and \(H \) are called \textit{Lagrange multipliers}.
Definition 2 (Lipschitz Continuity). Let \mathcal{X} and \mathcal{Y} be open sets in two normed spaces $(\mathcal{N}_X, \| \cdot \|_X)$ and $(\mathcal{N}_Y, \| \cdot \|_Y)$. A function $F : \mathcal{X} \to \mathcal{Y}$ is called

i) **Lipschitz continuous** at $x \in \mathcal{X}$ if there exists a $\gamma(x) > 0$ such that

$$\|F(z) - F(x)\|_Y \leq \gamma(x)\|z - x\|_X, \quad (z \in \mathcal{X}),$$

(1)

ii) **uniformly Lipschitz continuous** in \mathcal{X} if there exists a $\gamma > 0$ such that (1) holds true with $\gamma(x) = \gamma$ for all $x \in \mathcal{X}$.
Theorem 3. [A Useful Taylor Approximation] Let S be an open subset of \mathbb{R}^n, $x, s \in \mathbb{R}^n$ such that $x + \theta s \in S$ for all $\theta \in [0, 1]$.

i) If $f \in C^1(S, \mathbb{R})$, and its gradient $g(x)$ is Lipschitz continuous at x with Lipschitz constant $\gamma^L(x)$, then

$$|f(x + s) - m^L(x + s)| \leq \frac{1}{2} \gamma^L(x)\|s\|^2,$$

where $m^L(x + s) = f(x) + g(x)^T s$ is the first-order Taylor approximation of f at x (a linear model).

ii) (Vectorisation of i)) If $F \in C^1(S, \mathbb{R}^m)$, and its Jacobian $D_x F(x)$ is Lipschitz continuous at x with Lipschitz constant $\gamma^L(x)$ (using the matrix operator norm induced by the norms on \mathbb{R}^n and \mathbb{R}^m), then

$$\|F(x + s) - M^L(x + s)\| \leq \frac{1}{2} \gamma^L(x)\|s\|^2,$$

where $M^L(x+s) = F(x) + D_x F(x)s$ is the first-order Taylor approximation of f at x.
iii) If $f \in C^2(S, \mathbb{R})$, and its Hessian $H(x)$ is Lipschitz continuous at x with Lipschitz constant $\gamma^Q(x)$, then

$$|f(x + s) - m^Q(x + s)| \leq \frac{1}{6} \gamma^Q(x) \|s\|^3,$$

where $m^Q(x + s) = f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s$ is the second-order Taylor approximation of f at x (a quadratic model).
Optimality Conditions for Continuous Optimisation

Optimality conditions are useful for the following reasons:

- They provide a means of guaranteeing that a candidate solution is indeed optimal (→ sufficient conditions).

- They indicate when a point is not optimal (→ necessary conditions).

- They form a guide in the design of algorithms, since lack of optimality is an indication of potential for improvement.
We first consider the unconstrained minimisation problem
\[(UCM) \min_{x \in \mathbb{R}^n} f(x),\]
where \(f \in C^1(\mathbb{R}^n, \mathbb{R})\).

Definition 4. A local minimiser for problem (UCM) is a point \(x^* \in \mathbb{R}^n\) for which there exists \(\rho > 0\) such that \(f(x) \geq f(x^*)\) for all \(x \in B_\rho(x^*)\).
Theorem 5 (Necessary Optimality Conditions for (UCM)). Let \(x^* \) be a local minimiser for problem (UCM).

i) Then the following first order necessary condition must hold,
\[g(x^*) = 0. \]

ii) If furthermore \(f \in C^2 \), then the following second order necessary condition must also hold,
\[s^\top H(x^*) s \geq 0, \quad (s \in \mathbb{R}^n), \]
that is, \(H(x^*) \) is positive semidefinite.
Theorem 6 (Sufficient Optimality Conditions for (UCM)). Let \(f \in C^2 \), and let \(x^* \in \mathbb{R}^n \) be a point where the following sufficient optimality conditions are satisfied,
\[
 g(x^*) = 0, \\
 s^T H(x^*) s > 0 \quad (s \in \mathbb{R}^n \setminus \{0\}),
\]
that is, \(H(x^*) \) is positive definite. Then \(x^* \) is an isolated local minimiser of \(f \).
The situation is more complex in the case of the equality constrained minimisation problem

\[
(\text{ECM}) \quad \min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } c(x) = 0,
\]

where \(f \in C^1(\mathbb{R}^n, \mathbb{R}) \) and \(c \in C^1(\mathbb{R}^n, \mathbb{R}^m) \).

Definition 7. A *local minimiser* for problem (ECM) is a point \(x^* \in \mathbb{R}^n \) for which there exists \(\rho > 0 \) such that \(f(x) \geq f(x^*) \) for all \(x \in B_\rho(x^*) \cap \{x : c(x) = 0\} \).

Definition 8 (LICQ). The *linear independence constraint qualification* is satisfied at \(x^* \) if the set of gradient vectors \(\{a_i(x^*) : i = 1, \ldots, m\} \) defined by the constraint functions is linearly independent.
Theorem 9 (Necessary Optimality Conditions for (ECM)). Let \(x^* \) be a local minimiser for problem (ECM) where the LICQ holds.

i) Then the following first order necessary conditions must hold: There exists a vector \(y^* \in \mathbb{R}^m \) of Lagrange multipliers such that

\[
c(x^*) = 0, \quad \text{(primal feasibility)}
\]
\[
\nabla_x \ell(x^*, y^*) = g(x^*) - A^T(x^*)y^* = 0 \quad \text{(dual feasibility)}.
\]

(Recall that \(g(x^*) - A^T(x^*)y^* = \nabla f(x^*) - \sum_{i=1}^m y_i^* \nabla c_i(x^*) \), so that dual feasibility says that \(\nabla f(x^*) \) is “counterbalanced” by a linear combination of the \(\nabla c_i(x^*) \)).

ii) Furthermore, if \(f, c \in C^2 \), then for all \(s \in \mathbb{R}^n \) such that

\[
a_i(x^*)^T s = 0, \quad (i = 1, \ldots, m),
\]

the following second order necessary condition must also hold,

\[
s^T H(x^*, y^*) s \geq 0,
\]

that is, \(H(x^*) \) is positive semidefinite in the directions that lie in the tangent space of the feasible manifold.
Note that Theorem 5 is merely the special case $m = 0$ of Theorem 9. Let us now further generalise the result so that it applies to minimisation problems with inequality constraints,

\[
\text{(ICM)} \quad \min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } c_I(x) \geq 0, \\
c_E(x) = 0,
\]

where $f \in C^1(\mathbb{R}^n, \mathbb{R})$, $c_I \in C^1(\mathbb{R}^n, \mathbb{R}^{m_I})$ and $c_E \in C^1(\mathbb{R}^n, \mathbb{R}^{m_E})$.

Definition 10. A local minimiser for problem (ICM) is a point $x^* \in \mathbb{R}^n$ for which there exists $\rho > 0$ such that $f(x) \geq f(x^*)$ for all $x \in B_\rho(x^*) \cap \{ x : c_E(x) = 0, c_I(x) \geq 0 \}$.

Definition 11. Let x^* be feasible for (ICM). The active set of constraints at x^* is the set of indices

\[\mathcal{A}(x^*) = E \cup \{ i \in I : c_i(x^*) = 0 \}.\]

The linear independence constraint qualification is satisfied at x^* if the set of vectors \(\{ \nabla c_i(x^*) : i \in \mathcal{A}(x^*) \} \) is linearly independent.
Theorem 12 (Necessary Optimality Conditions for (ICM)). Let \(x^* \) be a local minimiser for problem (ICM) where the LICQ holds.

i) Then the following first order necessary conditions must hold: There exists a vector \(y^* \in \mathbb{R}^m \) of Lagrange multipliers such that

\[
\begin{align*}
 c_E(x^*) &= 0, \quad \text{(primal feasibility 1)}, \\
 c_I(x^*) &\geq 0, \quad \text{(primal feasibility 2)}, \\
 \nabla_x \ell(x^*, y^*) &= g(x^*) - A^T(x^*)y^* = 0 \quad \text{(dual feasibility 1)}, \\
 y_i^* &\geq 0, \quad (i \in I) \quad \text{(dual feasibility 2)}, \\
 c_i(x^*)y_i^* &= 0, \quad (i \in E \cup I) \quad \text{(complementarity)}.
\end{align*}
\]

(These conditions are also called Karush-Kuhn-Tucker (KKT) conditions. Complementarity guarantees that \(y_i^* = 0 \) for all \(i \notin \mathcal{A}(x^*) \).)

ii) Furthermore, if \(f, c \in C^2 \), then for all \(s \in \mathbb{R}^n \) such that

\[
\begin{align*}
 a_i(x^*)^T s &= 0, \quad (i \in E \cup \{i \in I : i \in \mathcal{A}(x^*), y_i^* > 0\}), \\
 a_i(x^*)^T s &\geq 0, \quad (i \in \{i \in I : i \in \mathcal{A}(x^*), y_i^* = 0\}),
\end{align*}
\]

the following second order necessary condition must also hold,

\[
 s^T H(x^*, y^*) s \geq 0.
\]
Remark 13. The second order optimality analysis is based on the following observation:

If x^* is a local minimiser of (ICM) and $x(t)$ is a feasible exit path from x^* with tangent s at x^*, then x^* must also be a local minimiser for the univariate constrained optimisation problem

$$
\begin{align*}
\min & \quad f(x(t)) \\
\text{s.t.} & \quad t \geq 0
\end{align*}
$$
Theorem 14 (Sufficient Optimality Conditions for (ICM)). Let x^* be a feasible point for (ICM) at which the LICQ holds, where it is assumed that $f, c \in C^2$. Let $y^* \in \mathbb{R}^m$ be a vector of Lagrange multipliers such that (x^*, y^*) satisfy the KKT conditions (see Theorem 12). If it is furthermore the case that

$$s^T H(x^*, y^*) s > 0$$

for all $s \in \mathbb{R}^n$ that satisfy

$$a_i(x^*)^T s = 0, \quad (i \in E \cup \{i \in I : i \in A(x^*), y_i^* > 0\}),$$

$$a_i(x^*)^T s \geq 0, \quad (i \in \{i \in I : i \in A(x^*), y_i^* = 0\}),$$

then x^* is a local minimiser for (ICM).