Multilevel Monte Carlo methods

Mike Giles

Mathematical Institute, University of Oxford

MCQMC, April 6, 2014

-∢ ≣ ▶

Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

- the simplicity of the idea
- its flexibility
- that it's not prescriptive, more an approach
- scope for improved performance through being creative
- lots of people working on a variety of applications

I will focus on ideas rather than lots of numerical results.

Control variate

Classic approach to variance reduction: approximate $\mathbb{E}[f]$ using

$$N^{-1}\sum_{n=1}^{N}\left\{f^{(n)}-\lambda\left(g^{(n)}-\mathbb{E}[g]\right)\right\}$$

where

- control variate g has known expectation $\mathbb{E}[g]$
- g is well correlated with f, and optimal value for λ can be estimated by a few samples

Two-level Monte Carlo

If we want to estimate $\mathbb{E}[f_1]$ but it is much cheaper to simulate $f_0 \approx f_1$, then since

$$\mathbb{E}[f_1] = \mathbb{E}[f_0] + \mathbb{E}[f_1 - f_0]$$

we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} f_0^{(n)} + N_1^{-1} \sum_{n=1}^{N_1} \left(f_1^{(n)} - f_0^{(n)} \right)$$

Two differences from standard control variate method:

- $\mathbb{E}[f_0]$ is not known, so has to be estimated
- $\lambda = 1$

Two-level Monte Carlo

If we define

- C_0 , V_0 to be cost and variance of f_0
- C_1, V_1 to be cost and variance of $f_1 f_0$

then the total cost is

$$N_0 C_0 + N_1 C_1$$

and the variance (assuming independent estimators) is

$$N_0^{-1} V_0 + N_1^{-1} V_1$$

so for a fixed variance the cost is minimised by choosing

$$\frac{N_1}{N_0} = \frac{\sqrt{V_1/C_1}}{\sqrt{V_0/C_0}}$$

- f_1 comes from double precision calculation
- f₀ comes from single precision calculation (often twice as fast on latest CPUs/GPUs)
- use the same random number generator for both calculations
- estimating V_0 and V_1 will give an optimal allocation of computational effort between single precision and double precision computations

Natural generalisation: given a sequence f_0, f_1, \ldots, f_L

$$\mathbb{E}[f_L] = \mathbb{E}[f_0] + \sum_{\ell=1}^L \mathbb{E}[f_\ell - f_{\ell-1}]$$

we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} f_0^{(n)} + \sum_{\ell=1}^{L} \left\{ N_\ell^{-1} \sum_{n=1}^{N_\ell} \left(f_\ell^{(n)} - f_{\ell-1}^{(n)} \right) \right\}$$

with independent estimation for each level

If we define

- C_0 , V_0 to be cost and variance of f_0
- C_ℓ, V_ℓ to be cost and variance of $f_\ell f_{\ell-1}$

then the total cost is
$$\sum_{\ell=0}^{L} N_{\ell} C_{\ell}$$
 and the variance is $\sum_{\ell=0}^{L} N_{\ell}^{-1} V_{\ell}$.

Using a Lagrange multiplier μ^2 to minimise the cost for a fixed variance

$$\frac{\partial}{\partial N_{\ell}} \sum_{k=0}^{L} \left(N_k C_k + \mu^2 N_k^{-1} V_k \right) = 0$$

gives

$$N_{\ell} = \mu \sqrt{V_{\ell}/C_{\ell}} \implies N_{\ell} C_{\ell} = \mu \sqrt{V_{\ell} C_{\ell}}$$

Setting the total variance equal to ε^2 gives

$$\mu = \varepsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right)$$

and hence, the total cost is

$$\sum_{\ell=0}^{L} N_{\ell} C_{\ell} = \varepsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right)^{2}$$

in contrast to the standard cost which is approximately $\varepsilon^{-2} V_0 C_L$.

The MLMC cost savings are therefore:

- V_L/V_0 , if $\sqrt{V_\ell C_\ell}$ increases with level
- C_0/C_L , if $\sqrt{V_\ell C_\ell}$ decreases with level

Parametric Integration

Stefan Heinrich introduced multilevel ideas in 1999 for parametric integration, in which x is a finite-dimensional random variable, and want to estimate $\mathbb{E}[f(x, \lambda)]$ for a range of values of the parameter λ .

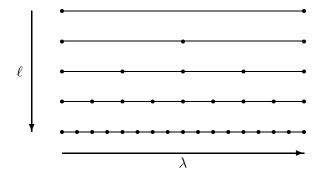
In the simplest case, suppose λ is a scalar, and the parameter range is $0\leq\lambda\leq 1.$

If we have already estimated $\mathbb{E}[f(x,0)]$ and $\mathbb{E}[f(x,1)]$ then

$$\mathbb{E}[f(x, \frac{1}{2})] = \frac{1}{2} \left(\mathbb{E}[f(x, 0)] + \mathbb{E}[f(x, 1)] \right) \\ + \mathbb{E}\left[f(x, \frac{1}{2}) - \frac{1}{2}(f(x, 0) + f(x, 1)) \right]$$

Parametric Integration

This can be repeated on multiple levels (perhaps using higher order interpolation if $f(x, \lambda)$ is sufficiently smooth)



This doesn't quite fit into the multilevel framework I've described, but the complexity analysis is very similar.

Multilevel Path Simulation

In 2006, I introduced the multilevel approach for infinite-dimensional integration arising from SDEs driven by Brownian diffusion.

Level ℓ corresponds to approximation using 2^ℓ timesteps, giving approximate payoff $\widehat{P}_\ell.$

Choice of finest level *L* depends on weak error (bias).

Multilevel decomposition gives

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^{L} \mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}]$$

Simplest estimator for $\mathbb{E}[\widehat{P}_{\ell}\!-\!\widehat{P}_{\ell-1}]$ for $\ell\!>\!0$ is

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{n=1}^{N_{\ell}} \left(\widehat{P}_{\ell}^{(n)} - \widehat{P}_{\ell-1}^{(n)} \right)$$

using same driving Brownian path for both levels

Variance is $N_{\ell}^{-1}V_{\ell}$ where $V_{\ell} = \mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}]$ gets smaller as ℓ increases because $\widehat{P}_{\ell}, \widehat{P}_{\ell-1}$ both approximate same P

To make RMS error less than ε

- choose *L* so that $\left(\mathbb{E}[\widehat{P}_L] \mathbb{E}[P]\right)^2 < \frac{1}{2}\varepsilon^2$
- choose $N_\ell \propto \sqrt{V_\ell/C_\ell}$ so total variance is less than $rac{1}{2}\,arepsilon^2$

(Slight generalisation of original version)

If there exist independent estimators \widehat{Y}_{ℓ} based on N_{ℓ} Monte Carlo samples, each costing C_{ℓ} , and positive constants $\alpha, \beta, \gamma, c_1, c_2, c_3$ such that $\alpha \geq \frac{1}{2}\min(\beta, \gamma)$ and

i)
$$\left| \mathbb{E}[\widehat{P}_{\ell} - P] \right| \leq c_1 2^{-\alpha \ell}$$

ii) $\mathbb{E}[\widehat{Y}_{\ell}] = \begin{cases} \mathbb{E}[\widehat{P}_0], & \ell = 0\\ \mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}], & \ell > 0 \end{cases}$
iii) $\mathbb{V}[\widehat{Y}_{\ell}] \leq c_2 N_{\ell}^{-1} 2^{-\beta \ell}$
iv) $\mathbb{E}[C_{\ell}] \leq c_3 2^{\gamma \ell}$

then there exists a positive constant c_4 such that for any $\varepsilon\!<\!1$ there exist L and N_ℓ for which the multilevel estimator

$$\widehat{Y} = \sum_{\ell=0}^{L} \widehat{Y}_{\ell},$$
has a mean-square-error with bound $\mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[P]\right)^2\right] < \varepsilon^2$

with an expected computational cost C with bound

$$C \leq \begin{cases} c_4 \, \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \, \varepsilon^{-2} (\log \varepsilon)^2, & \beta = \gamma, \\ c_4 \, \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & 0 < \beta < \gamma. \end{cases}$$

Two observations of optimality:

- MC simulation needs O(ε⁻²) samples to achieve RMS accuracy ε. When β > γ, the cost is optimal — O(1) cost per sample on average. (Would need multilevel QMC to further reduce costs)
- When $\beta < \gamma$, another interesting case is when $\beta = 2\alpha$, which corresponds to $\mathbb{E}[\widehat{Y}_{\ell}]$ and $\sqrt{\mathbb{E}[\widehat{Y}_{\ell}^2]}$ being of the same order as $\ell \to \infty$. In this case, the total cost is $O(\varepsilon^{-\gamma/\alpha})$, which is the cost of a single sample on the finest level — again optimal.

MLMC Theorem allows a lot of freedom in constructing the multilevel estimator. I sometimes use different approximations on the coarse and fine levels:

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{n=1}^{N_{\ell}} \left(\widehat{P}_{\ell}^{f}(\omega^{(n)}) - \widehat{P}_{\ell-1}^{c}(\omega^{(n)}) \right)$$

The telescoping sum still works provided

$$\mathbb{E}\left[\widehat{P}_{\ell}^{f}\right] = \mathbb{E}\left[\widehat{P}_{\ell}^{c}\right].$$

Given this constraint, can be creative to reduce the variance

$$\mathbb{V}\left[\widehat{P}_{\ell}^{f}-\widehat{P}_{\ell-1}^{c}\right].$$

Two examples:

• zero-mean control variate estimator: if

$$\widehat{P}_{\ell}(\omega^{(n)}) \approx \widehat{P}_{\ell-1}(\omega^{(n)}) + Z(\omega^{(n)})$$

where $\mathbb{E}[Z] = 0$, then use

$$\widehat{P}_{\ell-1}^{c}(\omega^{(n)}) \equiv \widehat{P}_{\ell-1}(\omega^{(n)}), \qquad \widehat{P}_{\ell}^{f}(\omega^{(n)}) \equiv \widehat{P}_{\ell}(\omega^{(n)}) - Z(\omega^{(n)})$$

• antithetic estimator:

$$\widehat{P}_{\ell-1}^{c}(\omega^{(n)}) \equiv \widehat{P}_{\ell-1}(\omega^{(n)}), \qquad \widehat{P}_{\ell}^{f}(\omega^{(n)}) \equiv \frac{1}{2} \left(\widehat{P}_{\ell}(\omega^{(n)}) + \widehat{P}_{\ell}(\omega^{(n)}_{anti}) \right)$$

where $\omega_{anti}^{(n)}$ is an antithetic "twin" with the same distribution as $\omega^{(n)}$.

MLMC Challenges

- not always obvious how to couple coarse and fine levels i.e. what does $\hat{P}_{\ell}(\omega^{(n)}) \hat{P}_{\ell-1}(\omega^{(n)})$ mean?
- can the MLMC flexibility be exploited to improve the variance decay?
 - particularly important for discontinuous "payoffs", since a small difference in the coarse and fine "paths" can produce an O(1) difference in the "payoff"
- numerical analysis proving the rate at which V_ℓ decays can be tough

Brownian Diffusion SDEs

Brownian increments for coarse path obtained by summing increments for fine path – very simple and natural

I prefer to use the first order Milstein discretisation – for simple put / call options (and more generally Lipschitz functions of the final state) this leads to

$$\widehat{P}_{\ell} - \widehat{P}_{\ell-1} = O(h_{\ell})$$

and hence $V_\ell = O(h_\ell^2)$.

However, not so easy for lookback, digital and barrier options.

(And in multiple dimensions requires Lévy areas, but can be avoided by an antithetic treatment, G & Szpruch, 2013)

Digital options

In a digital option, the payoff is a discontinuous function of the final state.

Using the Milstein approximation, first order strong convergence means that $O(h_{\ell})$ of the simulations have coarse and fine paths on opposite sides of a discontinuity.

Hence,

$$\widehat{P}_{\ell} - \widehat{P}_{\ell-1} = \left\{egin{array}{cc} O(1), & ext{with probability } O(h_{\ell}) \\ O(h_{\ell}), & ext{with probability } O(1) \end{array}
ight.$$

SO

$$\mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}] = O(h_\ell), \quad \mathbb{E}[(\widehat{P}_\ell - \widehat{P}_{\ell-1})^2] = O(h_\ell),$$

and hence $V_\ell = O(h_\ell)$, not $O(h_\ell^2)$

Digital options

Three fixes:

- Splitting: split each path simulation into *M* paths by trying *M* different values for the Brownian increment for the last fine path timestep
- Conditional expectation: using the Euler discretisation instead of Milstein for the final timestep, conditional on all but the final Brownian increment, the final state has a Gaussian distribution, with a known analytic conditional expectation in simple cases
- Change of measure: when the expectation is not known, can use a change of measure so the coarse path takes the same final state as the fine path — difference in the "payoff" now comes from the Radon-Nikodym derivative

Numerical Analysis

	Euler		Milstein	
option	numerics	analysis	numerics	analysis
Lipschitz	O(h)	<i>O</i> (<i>h</i>)	$O(h^2)$	$O(h^2)$
Asian	O(h)	O(h)	$O(h^2)$	$O(h^2)$
lookback	O(h)	O(h)	$O(h^2)$	$o(h^{2-\delta})$
barrier	$O(h^{1/2})$	$o(h^{1/2-\delta})$	$O(h^{3/2})$	$o(h^{3/2-\delta}) = o(h^{3/2-\delta})$
digital	$O(h^{1/2})$	$O(h^{1/2}\log h)$	$O(h^{3/2})$	$o(h^{3/2-\delta})$

Table: V_{ℓ} convergence observed numerically (for GBM) and proved analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (2009) and Avikainen (2009). Milstein analysis due to G, Debrabant & Rößler (2012).

Infinite activity rate general Lévy processes (Dereich 2010; Marxen 2010; Dereich & Heidenreich 2011)

- on level ℓ , simulate jumps bigger than δ_ℓ $(\delta_\ell o 0$ as $\ell o \infty)$
- either neglect smaller jumps or use a Gaussian approximation
- multilevel problem: discrepancy in treatment of jumps which are bigger than δ_ℓ but smaller than $\delta_{\ell-1}$

Lévy processes

Exact simulation (Cheng Zhu, Filippo Zinzani, Yuan Xia)

- with some popular exponential-Lévy models (variance-gamma, NIG) possible to directly simulate Lévy increments over fine timesteps
- sum them pairwise to get corresponding increments for coarse path
- coarse and fine path simulations are both exact, so what's the point of multilevel simulation?
 - Asian options
 - lookback options
 - barrier options
 - other path-dependent options

Heston stochastic volatility

Glasserman & Kim (2011) developed a series expansion for sampling from the integrated variance:

$$\left(\int_{0}^{T} V_{s} ds \mid V_{0} = v_{0}, V_{t} = v_{t}\right) \stackrel{d}{=} \sum_{n=1}^{\infty} x_{n} + \sum_{n=1}^{\infty} y_{n} + \sum_{n=1}^{\infty} z_{n}$$

where x_n, y_n, z_n are independent random variables.

Multilevel possibility:

- truncate series at K_ℓ $(K_\ell o \infty \text{ as } \ell o \infty)$
- should help for European options as well as path-dependent options

Belomestny & Schoenmakers (2011) have developed a multilevel implementation of upper bound dual pricing

- based on nested simulation algorithm of Andersen and Broadie (2004)
- requires sub-sampling at each timestep to estimate a conditional expectation (the continuation value)
- multilevel treatment uses a different number of sub-samples M_ℓ on each level $(M_\ell \to \infty \text{ as } \ell \to \infty)$

SPDEs

- very natural straightforward application, with better savings than SDEs due to higher dimensionality
- big challenge is in numerical analysis noteworthy contribution by Charrier, Scheichl & Teckentrup (2010)
- range of applications
 - ► Graubner & Ritter (2008) parabolic
 - ► G, Reisinger (2009-11) parabolic
 - Barth, Lang, Mishra, Schwab, Sukys, Zollinger (2010/11)
 elliptic, parabolic, hyperbolic
 - ▶ Cliffe, G, Scheichl, Teckentrup (2010/11) elliptic

Engineering Uncertainty Quantification

- consider 3D elliptic PDE, with uncertain boundary data
- \bullet use grid spacing proportional to $2^{-\ell}$ on level ℓ
- cost is $O(2^{-3\ell})$, if using an efficient multigrid solver
- 2nd order accuracy means that

$$\widehat{P}_{\ell}(\omega) - \widehat{P}(\omega) \approx c(\omega) 2^{-2\ell}$$

 $\implies \widehat{P}_{\ell-1}(\omega) - \widehat{P}_{\ell}(\omega) \approx 3 c(\omega) 2^{-2\ell}$

Elliptic SPDE

Elliptic PDE with random coefficient $k(\mathbf{x}, \omega)$:

$$-\nabla . (k(\mathbf{x}, \omega) \nabla p(\mathbf{x}, \omega)) = 0, \qquad \mathbf{x} \in D,$$

Model k as a lognormal random field, i.e. log k is a Gaussian field with mean 0 and covariance function

$$R(\mathbf{x}, \mathbf{y}) = \sigma^2 \exp\left(-\|\mathbf{x}-\mathbf{y}\|_1/\lambda\right)$$

Samples of log k are provided by a Karhunen-Loève expansion:

$$\log k(\mathbf{x},\omega) = \sum_{n=0}^{\infty} \sqrt{\theta_n} \, \xi_n(\omega) \, f_n(\mathbf{x}),$$

where ξ_n are iid unit Normal random variables.

Elliptic SPDE

In multilevel treatment:

- different spatial grid resolution on each level
- truncate KL-expansion at different cutoffs K_{ℓ}

$$\log k_{\ell}(\mathbf{x},\omega) = \sum_{n=0}^{K_{\ell}} \sqrt{\theta_n} \, \xi_n(\omega) \, f_n(\mathbf{x}),$$

 (more efficient ways of generating log k_ℓ use technique known as circulant embedding)

Stochastic chemical reactions

In stochastic simulations, each reaction is a Poisson process with a rate which depends on the current concentrations.

In the "tau-leaping" method (Euler-Maruyama method) the reaction rates are frozen at the start of the timestep, so for each reaction sample from a Poisson process

 $P(\lambda \Delta t)$

to determine the number of reactions in that timestep.

(As $\lambda \Delta t \rightarrow \infty$, the standard deviation becomes smaller relative to the mean, and it approaches the deterministic limit.)

Stochastic chemical reactions

Anderson & Higham (2011) have developed a very efficient multilevel version of this algorithm – big savings because finest level usually has 1000's of timesteps.

Key challenge: how to couple coarse and fine path simulations?

```
Crucial observation: P(t_1) + P(t_2) \stackrel{d}{=} P(t_1+t_2)
```

Only requirement: $t_1, t_2 \ge 0$

Stochastic chemical reactions

Solution:

- simulate the Poisson variable on the coarse timestep as the sum of two fine timestep Poisson variables
- couple the fine path and coarse path Poisson variables by using common variable based on smaller of two rates

$$\begin{aligned} & \lambda_n^c \Delta t/2 & \lambda_n^c \Delta t/2 \\ & t_n & t_{n+1} \\ & \lambda_n^f \Delta t/2 & \lambda_{n+1/2}^f \Delta t/2 \\ & & \\ &$$

MLQMC

To further improve the multilevel complexity, can use randomised QMC in place of MC.

G & Waterhouse (2008-9) used rank-1 lattice rules for scalar SDE applications

- far fewer samples required on coarsest levels
- almost no difference on finest levels
- overall, big savings when using Milstein discretisation (so most work on coarsest levels)
- in best case (GBM with European option) complexity was approximately $O(\varepsilon^{-1.5})$

MLQMC

Numerical algorithm:

- **()** start with L=0
- get an initial estimate for V_L using 32 random offsets and N_L = 1
 while ∑^L_{ℓ=0} V_ℓ > ε²/2, try to maximise variance reduction per unit cost by doubling N_ℓ on the level with largest V_ℓ / (C_ℓ N_ℓ)
- if L<2 or the bias estimate is greater than ε/√2, set L := L+1 and go back to step 2

Conclusions

- multilevel idea is very simple; key is how to apply it in new situations
- lots of freedom to construct more efficient estimators:
 - change of measure
 - zero-mean control variate
 - antithetic treatment
 - sub-division
- being used for an increasingly wide range of applications; biggest computational savings when coarsest (helpful) approximation is much cheaper than finest
- $\bullet\,$ currently, getting at least 100 $\times\,$ savings for SPDEs and stochastic chemical reaction simulations

Webpage for my research/papers: people.maths.ox.ac.uk/gilesm/mlmc.html

MLMC Community

Webpage: people.maths.ox.ac.uk/gilesm/mlmc_community.html

Abo Academi (Avikainen) - numerical analysis Basel (Harbrecht) - elliptic SPDEs, sparse grid links Bath (Kyprianou, Scheichl, Shardlow) - elliptic SPDEs, MCMC, Lévy-driven SDEs Chalmers (Lang) - SPDEs Christian-Albrechts University (Gnewuch) - multilevel QMC Duisburg (Belomestny) - Bermudan and American options Edinburgh (Davie, Szpruch) - SDEs, numerical analysis ETH Zürich (Jenny, Jentzen, Schwab) - numerical analysis, SPDEs Frankfurt (Gerstner, Kloeden) - numerical analysis, sparse grid links Fraunhofer ITWM (Iliev) - SPDEs in engineering Hong Kong (Chen) – Brownian meanders, nested simulation in finance IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis Kaiserslautern (Heinrich, Korn, Ritter) - finance, SDEs, complexity analysis, parametric integration KAUST (Tempone) - adaptive time-stepping Kiel (Gnewuch) - randomized multilevel QMC Mannheim (Neuenkirch) - numerical analysis, fractional Brownian motion Marburg (Dereich) - Lévy-driven SDEs Munich (Hutzenthaler) - numerical analysis Oxford (Giles, Hambly, Reisinger) - SDEs, jump-diffusion, SPDEs, numerical analysis Passau (Müller-Gronbach) - infinite-dimensional integration, complexity analysis Purdue (Gittelson) - SDPEs Stanford (Glvnn) - numerical analysis Strathclyde (Higham, Mao) - numerical analysis, exit times, stochastic chemical modelling Stuttgart (Barth) - SPDEs Texas A&M (Efendiev) – SPDEs in engineering UCLA (Caflisch) - Coulomb collisions in physics UNSW (Dick, Kuo, Sloan) - multilevel QMC WIAS (Schoenmakers) - Bermudan and American options Wisconsin (Anderson) - numerical analysis, stochastic chemical modelling

(日) (同) (三) (三)

MCQMC 2014

Three keynote talks (out of a total of eight):

- Steffen Dereich (WWU)
 - Multilevel Monte Carlo for Lévy-driven SDEs
 - looking at methods and analysis for MLMC for path-dependent functionals of Lévy-driven SDEs
- Peter Glynn (Stanford)
 - Creating unbiased Monte Carlo schemes from biased ones: theory and applications
 - modifies MLMC to randomise the selection of level for each sample
- Raúl Tempone (KAUST)
 - Adaptive strategies for Multilevel Monte Carlo
 - discusses adaptive timestepping for MLMC simulations

Also 4 MLMC sessions (3 invited, and 1 contributed on Thurs afternoon) with a total of 29 presentations covering a wide range of topics