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Multilevel Monte Carlo

Given a scalar SDE driven by a Brownian diffusion

dS(t) = a(S, t) dt+ b(S, t) dW (t), 0 < t < T

to estimate E[P ] where the path-dependent payoff P can be

approximated by P̂ℓ using 2ℓ uniform timesteps, we use

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1].

E[P̂ℓ−P̂ℓ−1] is estimated using Nℓ simulations with same

W (t) for both P̂ℓ and P̂ℓ−1,

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂

(i)
ℓ −P̂

(i)
ℓ−1

)
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MLMC Theorem

Theorem: Let P be a functional of the solution of an SDE, and P̂ℓ the

discrete approximation using a timestep hℓ = 2−ℓ T .

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo

samples, with computational complexity (cost) Cℓ, and positive

constants α≥ 1
2 , β, c1, c2, c3 such that

i)

∣∣∣E[P̂ℓ − P ]
∣∣∣ ≤ c1 h

α
ℓ

ii) E[Ŷℓ] =

{
E[P̂0], ℓ = 0

E[P̂ℓ − P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2N
−1
ℓ h

β
ℓ

iv) Cℓ ≤ c3Nℓ h
−1
ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<e−1 there

are values L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2]
< ε2

with a computational complexity C with bound

C ≤





c4 ε
−2, β > 1,

c4 ε
−2(log ε)2, β = 1,

c4 ε
−2−(1−β)/α, 0 < β < 1.
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Numerical Analysis

If P is a Lipschitz function of S(T ), value of underlying path
simulation at a fixed time, the strong convergence property

(
E

[
(ŜN − S(T ))2

])1/2
= O(hγ)

implies that V[P̂ℓ−P ] = O(h2γℓ ) and hence

Vℓ ≡ V[P̂ℓ−P̂ℓ−1] = O(h2γℓ ).

Therefore β=1 for Euler-Maruyama discretisation,
and β=2 for the Milstein discretisation.

However, in general, good strong convergence is neither
necessary nor sufficient for good convergence for Vℓ.
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Numerics and Analysis

Euler Milstein

option numerics analysis numerics analysis

Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) O(h2|log h|2)
barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vℓ convergence observed numerically (for GBM) and
proved analytically (for more general SDEs) for both the
Euler and Milstein discretisations. δ can be any strictly
positive constant.
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Numerical Analysis

Analysis for Euler discretisations:

lookback and barrier options: Giles, Higham & Mao
(Finance & Stochastics, 2009)

lookback analysis follows from strong convergence

barrier analysis shows dominant contribution comes
from paths which are near the barrier

similar analysis for digital options gives O(h1/2−δ)

bound instead of O(h1/2 log h)

digital options: Avikainen (Finance & Stochastics, 2009)

method of analysis is rather different
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Numerical Analysis

Analysis for Milstein discretisations:

builds on approach in paper with Higham and Mao

key idea for digital and barrier options is to

use boundedness of all moments to bound the
contribution from “extreme” paths (e.g. with

max
n

|∆Wn| > h1/2−δ for some δ>0)

uses asymptotic analysis to bound the contribution
from paths which are not “extreme”
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Some preliminaries

These results come from Extreme Value Theory, which
looks at the asymptotic distribution of the maximum of a
large set of i.i.d. random variables.

Lemma 0.1 If U (n), n = 1, . . . , N are independent samples
from a uniform distribution on the unit interval [0, 1], then for
any positive integer m

E

[
max
n

| logU (n)|m
]
= O((logN)m), as N → ∞.
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Some preliminaries

Lemma 0.2 If Z(n), n = 1, . . . , N are independent samples
from a standard Normal distribution, then for any positive
integer m

E

[
max
n

|Z(n)|m
]
= O((logN)m/2), as N → ∞.

Corollary 0.3 If W (n)(t), n = 1, . . . , N are independent
Brownian paths on [0, 1], conditional on Wn(0) = Wn(1) = 0,
then for any positive integer m

E

[
max
n

sup
[0,1]

|W (n)(t)|m
]
= O((logN)m/2), as N → ∞.
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Milstein Scheme

MLMC Theorem allows different approximations on the
coarse and fine levels:

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂

f
ℓ (ω

(n))−P̂ c
ℓ−1(ω

(n))
)

The telescoping sum still works provided

E

[
P̂

f
ℓ

]
= E

[
P̂ c
ℓ

]
.

The key is to exploit this freedom to reduce the variance

V

[
P̂

f
ℓ − P̂ c

ℓ−1

]
.
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Milstein Scheme

Fine path Brownian interpolation: within each timestep,
model the behaviour as simple Brownian motion (constant
drift and volatility) conditional on two end-points

Ŝf (t) = Ŝf
n + λ(t)(Ŝf

n+1 − Ŝf
n)

+ bn

(
W (t)−Wn − λ(t)(Wn+1−Wn)

)
,

where λ(t) =
t− tn

tn+1 − tn
.

There then exist analytic results for the distribution of the
min/max/average over each timestep, and probability of
crossing a barrier.
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Brownian Bridge results

Conditional on Ŝn+1, Ŝn, a sample of the minimum of Ŝ in
the time interval [tn, tn+1] is given by

Ŝmin = 1
2

(
Ŝn+1 + Ŝn −

√
(Ŝn+1−Ŝn)2 − 2 b2n h logUn

)

where Un is a uniform (0, 1) r.v.

Similarly, a sample of the maximum is given by

Ŝmax = 1
2

(
Ŝn+1 + Ŝn +

√
(Ŝn+1−Ŝn)2 − 2 b2n h log Vn

)

where Vn is a different uniform (0, 1) r.v.
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Brownian Bridge results

Conditional on Ŝn+1, Ŝn > B, the probability that Ŝ drops
below B in the time interval [tn, tn+1] is

P(Ŝmin < B | Ŝn, Ŝn+1 > B) = exp

(
− 2 (Ŝn+1−B) (Ŝn−B)

b2n h

)

Similarly,

P(Ŝmax > B | Ŝn, Ŝn+1 < B) = exp

(
− 2 (B−Ŝn+1) (B−Ŝn)

b2n h

)
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Milstein Scheme

Coarse path Brownian interpolation: exactly the same, but
with double the timestep, so for even n

Ŝc(t) = Ŝc
n + λ(t)(Ŝc

n+2 − Ŝc
n)

+ bn

(
W (t)−Wn − λ(t)(Wn+2−Wn)

)
,

where λ(t) =
t− tn

tn+2 − tn
. Hence, in particular,

Ŝc
n+1 ≡ Ŝc(tn+1) = 1

2(Ŝ
c
n + Ŝc

n+2)

+ bn

(
Wn+1 − 1

2(Wn +Wn+2)
)
,
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Milstein Scheme

Theorem: Under standard conditions,

E

[
sup
[0,T ]

∣∣∣Ŝ(t)− S(t)
∣∣∣
m
]
= O((h log h)m),

sup
[0,T ]

E

[ ∣∣∣Ŝ(t)− S(t)
∣∣∣
m]

= O(hm),

E



(∫ T

0

Ŝ(t)−S(t) dt

)2

 = O(h2).
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Milstein Scheme

The first result comes from considering

Ŝ(t)− S(t) = (Ŝ(t)− ŜKP (t)) + (ŜKP (t)− S(t))

where ŜKP (t) is the Kloeden-Platen interpolant for which
they prove

E

[
sup
[0,T ]

∣∣∣ŜKP (t)− S(t)
∣∣∣
m
]
= O(hm).

It is easily shown that

Ŝ(t)− ŜKP (t) = 1
2 b

′

nbn Y (t),

where . . .
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Milstein Scheme

Y (t) = λ (Wn+1−Wn)
2 − (W (t)−Wn)

2

= λ (1−λ) (Wn+1−Wn)
2 − (W (t)−Wn − λ (Wn+1−Wn))

2

− 2λ (Wn+1−Wn) (W (t)−Wn − λ (Wn+1−Wn))

and then the result comes from Hölder’s inequality

E

[
sup
[0,T ]

∣∣∣Ŝ(t)−ŜKP (t)
∣∣∣
m
]
≤

√√√√E

[
max
n

|b′nbn|2m
]
E

[
sup
[0,T ]

|Y (t)|2m
]

and bounds on E
[
sup[0,T ] |Y (t)|2m

]
coming from

E[sup
[0,T ]

|W (t)−Wn − λ (Wn+1−Wn)|2m]

= hm E[max
n

sup
[0,1]

|W (n)(t)− tW
(n)
1 |m]
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Milstein Scheme

The second one comes from setting

W (t)−Wn =
√
λh Z1

Wn+1−W (t) =
√

(1−λ)h Z2

with Z1, Z2 independent standard Normal random variables.

Then |Y | ≤ h max(Z2
1 , Z

2
2 ) leads to

|Y |m ≤ hm max(Z2m
1 , Z2m

2 ) ≤ hm (Z2m
1 + Z2m

2 )

and hence the assertion follows from

E

[ ∣∣∣Ŝ(t)− ŜKP (t)
∣∣∣
m]

= 2−m
E[ |b′nbn|m] E[ |Y |m],

and standard bounds for moments of Normal random
variables.
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Milstein Scheme

For the third one, setting Xn :=
∫ tn+1

tn
Y (t) dt gives

E



(∫ T

0

(Ŝ(t)− ŜKP (t)) dt

)2

 = 1

4E



(

N−1∑

n=0

b′nbnXn

)2

 .

For n>m, E[b′mbmXmb′nbnXn] = 0 since Xn is independent of
b′mbmXmb′nbn and E[Xn] = 0. In addition, the Xn are iid
random variables, and therefore

E



(∫ T

0

(Ŝ(t)− ŜKP (t)) dt

)2

 = 1

4E[X
2
0 ]

N−1∑

n=0

E[(b′nbn)
2].

The proof is completed by noting that E[X2
0 ] = O(h4) due to

standard moment bounds for Brownian increments.
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Lookback Option

Lookback options are a Lipschitz function of the minimum
over the whole simulation path.

For the fine path, the minimum over one timestep is

Ŝ
f
n,min = 1

2

(
Ŝf
n + Ŝ

f
n+1 −

√(
Ŝ
f
n+1−Ŝ

f
n

)2
− 2

(
b
f
n

)2
hℓ logUn

)

where Um is a (0, 1] uniform random variable.

For the coarse path, define Ŝc
n for odd n using conditional

Brownian interpolation, then use the same expression for
the minimum with same Un – this doesn’t change the
distribution of the computed minimum over the coarse
timestep, so the telescoping sum is OK.
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Lookback Option

Defining D̂
f/c
n = 1

2

√(
Ŝ
f/c
n+1−Ŝ

f/c
n

)2
− 2 (b

f/c
n )2 h logUn , gives

∣∣∣Ŝf
min − Ŝc

min

∣∣∣ ≤ max
n

∣∣∣Ŝf
n,min − Ŝc

n,min

∣∣∣

≤ max
n

∣∣∣Ŝf
n − Ŝc

n

∣∣∣+max
n

∣∣∣D̂f
n − D̂c

n

∣∣∣

Tedious analysis leads to

∣∣∣D̂f
n−D̂c

n

∣∣∣ ≤
(∣∣∣Ŝf

n+1 − Ŝc
n+1

∣∣∣+
∣∣∣Ŝf

n − Ŝc
n

∣∣∣
)
+ |bfn−bcn|

√
h | logUn|

and hence

E

[∣∣∣Ŝf
min − Ŝc

min

∣∣∣
2
]
= O((h log h)2)
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Barrier and Digital Options

The barrier option is based on the Brownian Bridge
construction and the probability of crossing the barrier
within each timestep.

The digital option is based on a Brownian extrapolation
from one timestep before the end – the analysis is similar.

The analysis for both uses the idea of “extreme” paths
which are highly improbable – the variance comes mainly
from non-extreme paths for which one can use asymptotic
analysis.
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Extreme Paths

Lemma: If Xℓ is a random variable on level l, and
E[ |Xℓ|m] ≤ Cm is uniformly bounded, then, for any δ > 0,

P[ |Xℓ| > h−δ
ℓ ] = o(hpℓ), ∀p > 0.

Proof: Markov inequality P[ |Xℓ|m > h−mδ
ℓ ] < h−mδ

ℓ E[ |Xℓ|m].

Lemma: If Yℓ is a random variable on level ℓ, E[Y 2
ℓ ] is

uniformly bounded, and the indicator function 1Eℓ
satisfies

E[1Eℓ
] = o(hpℓ), ∀p > 0 then

E[ |Yℓ|1Eℓ
] = o(hpℓ), ∀p > 0.

Proof: Hölder inequality E[ |Yℓ|1Eℓ
] ≤
√

E[Y 2
ℓ ] E[1Eℓ

]
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Extreme Paths

Theorem: For any γ>0, the probability that W (t), its
increments ∆Wn and the corresponding SDE solution S(t)

and approximations Ŝ
f
n and Ŝc

n satisfy any of the following
“extreme” conditions

max
n

(
max(|S(nh)|, |Ŝf

n |, |Ŝc
n|
)

> h−γ

max
n

(
max(|S(nh)−Ŝc

n|, |S(nh)−Ŝf
n |, |Ŝf

n−Ŝc
n|)
)

> h1−γ

max
n

|∆Wn| > h1/2−γ

is o(hp) for all p>0.
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Non-extreme paths

Furthermore, there exist constants c1, c2, c3, c4 such that if

none of these conditions is satisfied, and γ < 1
2 , then

max
n

|Ŝf
n − Ŝ

f
n−1| ≤ c1 h

1/2−2γ

max
n

|bfn− b
f
n−1| ≤ c2 h

1/2−2γ

max
n

(
|bfn|+|bcn|

)
≤ c3 h

−γ

max
n

|bfn− bcn| ≤ c4 h
1/2−2γ

where bcn is defined to equal bcn−1 if n is odd.
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Barrier and Digital Options

For barrier options, split paths into 3 subsets:

extreme paths

paths with a minimum within O(h1/2−γ) of the barrier

rest

– dominant contribution comes from the second subset.

For digital options, again split paths into 3 subsets:

extreme paths

paths with final S(T ) within O(h1/2−γ) of the strike

rest

– dominant contribution again from the second subset.
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Other numerical analysis

multi-dimensional Milstein – next lecture

multilevel scalar finite rate jump-diffusion, including
path-dependent Poisson rate – Yuan Xia

algorithm and numerical results presented at
MCQMC’10

numerical analysis completed in DPhil, 2014

multilevel Greeks – Sylvestre Burgos

algorithm and numerical results presented at
MCQMC’10

numerical analysis completed in DPhil, 2014
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Conclusions

numerical analysis of multilevel variance achieves
bounds which match numerical experiments for Milstein
discretisation of scalar SDEs and all common payoffs

Brownian interpolation is key to obtaining rapid
convergence of the multilevel variance for complex
payoffs

excluding the significance of “extreme” paths and
using asymptotic analysis for the rest is a non-standard
approach to numerical analysis, but seems quite flexible

Multilevel papers are available from:
people.maths.ox.ac.uk/gilesm/mlmc.html
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