Stochastic Numerical Analysis

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

MLMC variance analysis

Today we are looking at the error analysis in

M.B. Giles, D.J. Higham and X. Mao. 'Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff'. *Finance and Stochastics*, 13(3):403-413, 2009

This is based on

- scalar SDE satisfying usual conditions
- Euler-Maruyama discretisation
- various different financial options

and is really doing the numerical analysis for the testcases in the original MLMC paper in *Operations Research*

MLMC variance analysis

European option with Lipschitz payoff:

 $P = f(S_T)$

Lookback option with Lipschitz payoff:

$$P = f\left(\inf_{[0,T]} S_t, S_T\right)$$

Digital call option:

$$P = H(S_T - K)$$

Barrier down-and-out option:

$$P = f(S_T) H(\inf_{[0,T]} S_t - B)$$

MLMC variance analysis

The objective is to bound $\mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}].$

Since

$$\widehat{P}_{\ell} - \widehat{P}_{\ell-1} = (\widehat{P}_{\ell} - P) - (\widehat{P}_{\ell-1} - P)$$

we will do this by using

$$\begin{aligned} \mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] &\leq \mathbb{E}[(\widehat{P}_{\ell} - \widehat{P}_{\ell-1})^2] \\ &\leq 2 \mathbb{E}[(\widehat{P}_{\ell} - P)^2] + 2 \mathbb{E}[(\widehat{P}_{\ell-1} - P)^2] \end{aligned}$$

and then bounding $\mathbb{E}[(\widehat{P}_{\ell}-P)^2]$.

European Lipschitz payoff

This case is easy.

If the payoff function is *L*-Lipschitz, so that

$$|f(x_1) - f(x_2)| \le L |x_1 - x_2|$$

then

$$\begin{split} \mathbb{E}[(\widehat{P} - P)^2] &\leq L^2 \ \mathbb{E}[(\widehat{S}(T) - S(T))^2] \\ &\leq C \ h \end{split}$$

due to $O(h^{1/2})$ strong convergence.

This extends to $\mathbb{E}[(\widehat{P}-P)^2] = O(h^2)$ when using the Milstein approximation.

This case is very similar

If the payoff function is *L*-Lipschitz, so that

$$|f(x_1, y_1) - f(x_2, y_2)| \le L (|x_1 - x_2| + |y_1 - y_2|)$$

then

$$\mathbb{E}[(\widehat{P}-P)^2] \le 2L^2 \left(\mathbb{E}[(\widehat{S}_{min} - \inf_{[0,T]} S_t)^2] + \mathbb{E}[(\widehat{S}(T) - S_T)^2] \right)$$

The questions are:

- how is \widehat{S}_{min} defined?
- what is the bound on $\mathbb{E}[(\widehat{S}_{min} \inf S_t)^2]$?

In this paper we chose to use the minimum of the discrete timestep values

$$\widehat{S}_{min} \equiv \min_{n} \widehat{S}_{n} \equiv \inf_{t} \widehat{S}(t)$$

where $\widehat{S}(t)$ is defined by piecewise linear interpolation between the discrete values \widehat{S}_n (not the usual Kloeden-Platen interpolant).

There is a theoretical result by Müller-Gronbach (2002) which says that

$$\mathbb{E}\left[\sup_{t} |\widehat{S}(t) - S_t|^p\right] \le C \ |h \log h|^{p/2}$$

For any two processes A_t, B_t ,

$$\sup_{t} A_{t} \leq \sup_{t} B_{t} + \sup_{t} (A_{t} - B_{t})$$

$$\sup_{t} B_{t} \leq \sup_{t} A_{t} + \sup_{t} (B_{t} - A_{t})$$

Hence

$$\sup_{t} A_t - \sup_{t} B_t | \leq \sup_{t} |A_t - B_t|$$

and also, by considering $C_t = -A_t$, $D_t = -B_t$,

$$\inf_{t} A_t - \inf_{t} B_t | \leq \sup_{t} |A_t - B_t$$

Therefore

$$\implies \left(\inf_{t} \widehat{S}(t) - \inf_{t} S_{t}\right)^{2} \leq \mathbb{E}\left[\sup_{t} |\widehat{S}(t) - S_{t}|^{2}\right]$$

and hence

$$\mathbb{E}[(\widehat{S}_{min} - \inf_t S_t)^2] \le C \ h |\log h|$$

which gives us the final bound

$$\mathbb{E}[(\widehat{P} - P)^2] = O(h | \log h|)$$

The digital payoff is

 $P = H(S_T > K)$

and the numerical approximation is

$$\widehat{P} = H(\widehat{S}(T) > K).$$

The exact and numerical payoffs differ only when one solution exceeds K and the other does not, so

$$\mathbb{E}(|\widehat{P} - P|^2) = \mathbb{P}(\{S_T > K\} \cap \{\widehat{S}(T) \le K\}) + \mathbb{P}(\{S_T \le K\} \cap \{\widehat{S}(T) > K\})$$

For any
$$0 < \delta < \frac{1}{2}$$
, we have

$$\mathbb{P}(\{S_T > K\} \cap \{\widehat{S}(T) \le K\}))$$

$$= \mathbb{P}\left(\{K + h^{1/2 - \delta/2} > S_T > K\} \cap \{\widehat{S}(T) \le K\}\right)$$

$$+ \mathbb{P}\left(\{S_T \ge K + h^{1/2 - \delta/2}\} \cap \{\widehat{S}(T) \le K\}\right)$$

$$< \mathbb{P}\left(K + h^{1/2 - \delta/2} > S_T > K\right)$$

$$+ \mathbb{P}\left(S_T - \widehat{S}(T) \ge h^{1/2 - \delta/2}\right)$$

We assume that S_T has a bounded p.d.f., so then

$$\mathbb{P}\left(K + h^{1/2 - \delta/2} > S_T > K\right) = O(h^{1/2 - \delta/2}) = O(h^{1/2 - \delta})$$
Stoch. NA, Lecture 8 – p. 11

Remember from Markov inequality (lecture 5) that

$$\mathbb{E}[|h^{-1/2}(\widehat{S}(T) - S_T)|^p] < \infty$$

for all p > 0 implies that for any $\delta > 0$ can prove that

$$\mathbb{P}\left(|\widehat{S}(T) - S_T| \ge h^{1/2 - \delta/2}\right) = o(h^q)$$

for any q > 0.

The other term is treated similarly, and hence $\mathbb{E}(|\widehat{P}-P|^2) = o(h^{1/2-\delta})$ for any $\delta > 0$.

Using the Milstein approximation, this would change to $\mathbb{E}(|\widehat{P}-P|^2) = o(h^{1-\delta})$

In later research I found a simple proof of a generalisation previously derived by Rainer Avikainen:

Thm: if a scalar r.v. τ has a p.d.f. with maximum density ρ_{sup} , and $\hat{\tau}$ is an approximation to τ , then for any s

$$\mathbb{E}[(\mathbf{1}_{\tau < s} - \mathbf{1}_{\widehat{\tau} < s})^2] \le c_p \,\rho_{sup}^{p/(p+1)} \,\mathbb{E}[\,|\tau - \widehat{\tau}|^p]^{1/(p+1)}$$

Proof: define

$$\begin{aligned}
\Omega_1 &= \{ |\tau - s| \le X \}, \\
\Omega_2 &= \{ |\tau - \hat{\tau}| \ge X \} \cap \Omega_1^c, \\
\Omega_3 &= \Omega_1^c \cap \Omega_2^c,
\end{aligned}$$

then if $\omega \in \Omega_3$ we have $\mathbf{1}_{\tau < s} - \mathbf{1}_{\widehat{\tau} < s} = 0$.

Hence,

$$\mathbb{E}[(\mathbf{1}_{\tau < s} - \mathbf{1}_{\widehat{\tau} < s})^2] \leq P_1 + P_2 \leq 2 \rho_{sup} X + X^{-p} \mathbb{E}[|\tau - \widehat{\tau}|^p]$$

with the second step using the Markov inequality.

Differentiating the upper bound w.r.t. X, we find that it is minimised by choosing

$$X^{p+1} = \frac{p}{2\rho_{sup}} \mathbb{E}[|\tau - \hat{\tau}|^p]$$

and we then get the bound

$$\mathbb{E}[(\mathbf{1}_{\tau < s} - \mathbf{1}_{\widehat{\tau} < s})^2] \leq c_p \rho_{sup}^{p/(p+1)} \mathbb{E}[|\tau - \widehat{\tau}|^p]^{1/(p+1)}$$

Payoff function:

$$P = f(S_T) \ H(\inf_{[0,T]} S_t - B)$$

with $|f(x) - f(y)| \le |x - y|$.

Numerical approximation:

$$\widehat{P} = f(\widehat{S}(T)) \ H(\widehat{S}_{min} - B)$$

with \widehat{S}_{min} as defined before.

What is the difficulty?

For some paths, an $O(h^{1/2})$ fraction, S_t crosses B but $\widehat{S}(t)$ does not, or vice versa, giving $\widehat{P} - P = O(1)$

First the analysis when f(S) is bounded, so $|f(S)| < f_{max}$.

Define
$$F = \{ \inf_t S_t \ge B \}, \ G = \{ \inf_t \widehat{S}(t) \ge B \}, \ \text{and then}$$

$$\begin{split} \mathbb{E}(|P-\widehat{P}|^2) &= \mathbb{E}(|f(S_T)\mathbf{1}_F - f(\widehat{S}(T))\mathbf{1}_G|^2) \\ &= \mathbb{E}(|f(S_T) - f(\widehat{S}(T))|^2\mathbf{1}_{\{F\cap G\}}) \\ &+ \mathbb{E}(|f(S_T)|^2\mathbf{1}_{\{F\cap G^c\}}) + \mathbb{E}(|f(\widehat{S}(T))|^2\mathbf{1}_{\{G\cap F^c\}}) \\ &\leq \mathbb{E}(|S(T) - \widehat{S}(T)|^2\mathbf{1}_{\{F\cap G\}}) \\ &+ f_{max}^2 \mathbb{P}(F\cap G^c) + f_{max}^2 \mathbb{P}(G\cap F^c) \\ &\leq \mathbb{E}(|S(T) - \widehat{S}(T)|^2) + f_{max}^2 \left[\mathbb{P}(F\cap G^c) + \mathbb{P}(G\cap F^c)\right] \\ &\leq O(h) + f_{max}^2 \left[\mathbb{P}(F\cap G^c) + \mathbb{P}(G\cap F^c)\right] \end{split}$$

$\omega \in F \cap G^c \text{ requires}$ $\inf_t S_t \in [B, B + h^{1/2 - \delta/2}] \text{ or }$ $\inf_t S_t - \inf_t \widehat{S}(t) > h^{1/2 - \delta/2}$

Hence

$$\mathbb{P}(F \cap G^c) \leq \mathbb{P}\left(\inf_t S_t \in [B, B + h^{1/2 - \delta/2}]\right) + \mathbb{P}\left(\inf_t S_t - \inf_t \widehat{S}(t) > h^{1/2 - \delta/2}\right) \leq O(h^{1/2 - \delta/2})$$

It's similar for $\mathbb{P}(F^c \cap G)$ so for any $\delta > 0$ we get

$$\mathbb{E}(|\widehat{P} - P|^2) = o(h^{1/2 - \delta}).$$

What happends if f(S) is not bounded?

There is a simpler analysis than given in the paper.

We know that $\mathbb{E}[|f(S_T)|^p]$, $\mathbb{E}[|f(\widehat{S}(T))|^p]$ are bounded for all p > 2. How do we use this?

Answer: Hölder inequality.

$$\mathbb{E}\left[|f(S_T)|^2 \mathbf{1}_{\{F \cap G^c\}}\right] \leq \left(\mathbb{E}[|f(S_T)|^{2p}]\right)^{1/p} \left(\mathbb{E}[(\mathbf{1}_{\{F \cap G^c\}})^q]\right)^{1/q} \\
\leq \left(\mathbb{E}[|f(S_T)|^{2p}]\right)^{1/p} \left(\mathbb{E}[\mathbf{1}_{\{F \cap G^c\}}]\right)^{1/q} \\
\leq O(h^{(1/2 - \delta/2)/q})$$

where 1/p + 1/q = 1.

Choose q very close to 1 so that $(1/2 - \delta/2) / q > 1/2 - \delta$ which needs $q < (1 - \delta)/(1 - 2\delta)$ and then we get

$$\mathbb{E}\left[|f(S_T)|^2 \mathbf{1}_{\{F \cap G^c\}}\right] = o(h^{1/2-\delta})$$

as before, and we can do the same for $\mathbb{E}\left[|f(S_T)|^2 \mathbf{1}_{\{F^c \cap G\}}\right]$ to obtain $\mathbb{E}(|\hat{P} - P|^2) = o(h^{1/2-\delta})$.