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Martingales

A martingale Mt has the property that for time s > t

E[Ms | Ft ] = Mt

i.e. given complete knowledge at the current time t, the
expected value of M at a future time s is equal to its current
value Mt.

In this course, we are interested in both discrete and
continuous-time martingales.
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Martingales

Discrete martingales will usually be of the form:

Mn =

n−1
∑

m=0

xm ∆Wm

Hence, for p > n,

Mp −Mn =

p−1
∑

m=n

xm ∆Wm

and therefore

E[Mp−Mn | Fn] = 0

because ∆Wm is independent of xm and E[∆Wm] = 0.
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Martingales

Continuous time:

Mt =

∫ t

0

xu dWu

Hence

Ms −Mt =

∫ s

t

xu dWu

and therefore

E[Ms−Mt | Ft ] = 0

because E[dWu] = 0.
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Doob inequality

If Mt is a martingale with M0=0, then for any p > 1

E[ |MT |
p] ≤ E

[

sup
[0,T ]

|Mt|
p

]

≤

(

p

p−1

)p

E[ |MT |
p]

Why is this useful?

a bound on E
[

sup[0,T ] |Mt|
p
]

is a tight control on how

big Mt can be

however, usually easier to bound E[ |Mt|
p]

we will use this to bound both the SDE solution, its
discrete approximation, and the error
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Quadratic variation

The quadratic variation of a discrete process Xn is defined
as

[X]n =

n−1
∑

m=0

(Xm+1 −Xm)2

Note that if

Xn+1 −Xn = an h+ bn ∆Wn

with ∆Wn ∼ N(0, h), then

(Xn+1 −Xn)
2 = b2n(∆Wn)

2 + o(h)
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Quadratic variation

For a continuous time process Xt, the quadratic variation is
defined similarly as

[X]T = lim
N→∞

N−1
∑

n=0

(

X(n+1)T/N −XnT/N

)2

which in the case of

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs

gives

[X]t =

∫ t

0

b2(Xs, s) ds
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BDG inequality

Like the Doob inequality, the Burkholder-Davis-Gundy
inequality concerns martingales and provides bounds on
the same quantity, but using the quadratic variation.

For any p ≥ 1, there are constants cp, Cp such that

for a continuous-time martingale

cp E[ [M ]
p/2
T ] ≤ E

[

sup
[0,T ]

|Mt|
p

]

≤ Cp E[ [M ]
p/2
T ]

for a discrete martingale,

cp E[ [M ]
p/2
N ] ≤ E

[

max
0<n≤N

|Mn|
p

]

≤ Cp E[ [M ]
p/2
N ]
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BDG inequality

Note that if

Mt =

∫ t

0

bu dWu

then

[M ]T =

∫ T

0

b2t dt.

It follows that when p = 2 we have

E[ [M ]T ] =

∫ T

0

E[b2t ] dt = E[M2
T ]

by the Itô isometry, and therefore the Doob inequality
implies the BDG inequality with C2 = 4.
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BDG inequality

Also, for general p ≥ 2, Jensen’s inequality gives us

(

∫ T

0

b2t dt

)p/2

≤ T p/2−1

∫ T

0

|bt|
p dt

and therefore

E[ [M ]
p/2
T ] ≤ T p/2−1

∫ T

0

E[|bt|
p] dt

This is how we can bound E

[

sup
[0,T ]

|Mt|
p

]

Stoch. NA, Lecture 5 – p. 10



SDEs

In Lecture 4 we saw the problems caused by superlinear
growth in the drift so, following Kloeden & Platen’s book,
we will now restrict attention to SDEs

dS = a(St, t) dt+ b(St, t) dW

for which there exists a constant K such that

Lipschitz continuity in space:

|a(x, t)− a(y, t)|+ |b(x, t)− b(y, t)| ≤ K |x−y|

linear growth bound:

|a(x, t)|+ |b(x, t)| ≤ K (1 + |x|)

square-root continuity in time:

|a(x, s)− a(x, t)|+ |b(x, s)− b(x, t)| ≤ K (1 + |x|)
√

|s−t|
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SDEs

Theorem: Under the standard conditions, starting from a
fixed S0, for any T > 0 and any p ≥ 2,

E

[

sup
[0,T ]

|St|
p

]

< ∞

i.e. all moments of sups∈[0,t] |Ss| are bounded for all time.

First we construct the SDE for Sn
t for n ≥ 2. Itô ’s formula

gives

d(Sn
t ) = nSn−1

t

(

a(St, t) dt+ b(St, t) dW
)

+ 1
2 n(n−1)Sn−2

t b2(St, t) dt
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SDEs

The integral form is Sn
t = Sn

0 + I1(t) + I2(t) + I3(t) where

I1(t) =

∫ t

0

nSn−1
s a(Ss, s) ds

I2(t) =

∫ t

0

1
2 n(n−1)Sn−2

s b2(Ss, s) ds

I3(t) =

∫ t

0

nSn−1
s b(Ss, s) dWs

and we have

sup
[0,t]

|Ss|
n ≤ |S0|

n + sup
[0,t]

|I1(s)|+ sup
[0,t]

|I2(s)|+ sup
[0,t]

|I3(s)|
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SDEs

By Jensen’s inequality we have

sup
[0,t]

|Ss|
2n ≤ 4

(

|S0|
2n + sup

[0,t]
|I1(s)|

2 + sup
[0,t]

|I2(s)|
2 + sup

[0,t]
|I3(s)|

2

)

Our objective is to establish an inequality of the form

E[V 2n
t ] ≤ α + β

∫ t

0

E[V 2n
s ] ds

for 0 ≤ t ≤ T , where Vt = sup[0,t] |Ss| and the constants α, β

depend on T, n,K.

We can then use the Grönwall inequality to achieve our
result with p = 2n.
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SDEs

The first two integrals are fairly easy: using Jensen’s
inequality again, and |S|p ≤ 1+‖S|q for 1<p<q, we have

I21 (t) ≤

(
∫ t

0

n |Ss|
n−1K(1 + |Ss|) ds

)2

≤ t

∫ t

0

(

n |Ss|
n−1K(1 + |Ss|)

)2
ds

≤ T

∫ t

0

n2K2 (3 + 4 |Ss|
2n) ds

≤ T

∫ t

0

n2K2 (3 + 4V 2n
s ) ds

The final bound is also an upper bound for I21 (s) for s < t, so

it’s an upper bound on sup[0,t] I
2
1 (s). Stoch. NA, Lecture 5 – p. 15



SDEs

Similarly,

I22 (t) ≤

(
∫ t

0

1
2n(n−1) |Ss|

n−2K2(1 + |Ss|)
2ds

)2

≤ t

∫ t

0

(

1
2n(n−1) |Ss|

n−2K2(1 + |Ss|)
2
)2

ds

≤ T

∫ t

0

(

1
2n(n−1)K2

)2
(7 + 8 |Ss|

2n) ds

≤ T

∫ t

0

1
2n(n−1)K2 (7 + 8V 2n

s ) ds

and the final bound is an upper bound on sup[0,t] I
2
2 (s).
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SDEs

Finally, for the third we use the Doob inequality and
Itô isometry to obtain

E

[

sup
[0,t]

I23 (s)

]

≤ 4

∫ t

0

E
[

n2 S2n−2
s K2(1 + |Ss|)

2
]

ds

≤ 4

∫ t

0

E
[

n2K2(3 + 4|Ss|
2n)
]

ds

≤ 4

∫ t

0

n2K2 (3 + 4E[V 2n
s ]) ds

This concludes the proof for p = 2n and n ≥ 2. For smaller
values of p the result follows from the Hölder inequality, as
discussed in lecture 4.
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