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Martingales

A martingale M; has the property that for time s > ¢
E| Mg | Ft] = My

l.e. given complete knowledge at the current time ¢, the
expected value of M at a future time s is equal to its current

value M;.

In this course, we are interested in both discrete and
continuous-time martingales.
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Martingales

Discrete martingales will usually be of the form:

n—1

M, = me AW,

m=0
Hence, for p > n,

p—1
My — My =Y ay AWy,

m=n

and therefore
E[My—M, | F,] =0

because AW,, is independent of z,, and E[AW,,,] = 0.
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Martingales

Continuous time:
(4
Mt :/ iy qu
0
Hence

S
MS—Mt:/ $uqu
t

and therefore
E[Ms—M; | F:] =0

because E[dW,] = 0.
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Doob inequality

If M; is a martingale with My=0, then forany p > 1

D
B[ M) < E | sup M| < (—p ) B[ | M
0,7 p—1

Why is this useful?

# abound on E | supyy 7y | M;|?] is a tight control on how
big M; can be

# however, usually easier to bound E[ | M;|?]

# we will use this to bound both the SDE solution, its
discrete approximation, and the error
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Quadratic variation

The quadratic variation of a discrete process X,, is defined
as

Note that if
Xn_|_1 — Xn — Up, h -+ bn AWn

with AW,, ~ N(0, k), then

(Xn41 — Xn)? = b2(AW,)? + o(h)
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Quadratic variation

For a continuous time process X;, the quadratic variation is
defined similarly as

. 2
X]r = lim (XN — Xn1/N)
which in the case of
t t
X; = X —I—/ a(Xs,s) ds —I—/ b(Xs,s) dWy
0 0

gives
t
(X :/ b* (X, s) ds
0
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BDG inequality

Like the Doob inequality, the Burkholder-Davis-Gundy
iInequality concerns martingales and provides bounds on
the same quantity, but using the quadratic variation.

For any p > 1, there are constants c,, C}, such that

# for a continuous-time martingale

Cp EHM]Z}/Z] < E | sup |MP| < C, E[[M]]%ﬂ]
| [0,7] ]
» for a discrete martingale,
Cp EHM]%2] < E OgaéXN|Mn|p < G, EHM]%2]

Stoch. NA, Lecture 5—p. 8



BDG inequality

Note that if
t
0

then
T
(M)r = / b? dt.
0
It follows that when p = 2 we have

T
E[[M]r] = /0 E[?] dt = E[M3

by the 1t6 isometry, and therefore the Doob inequality
implies the BDG inequality with Cy = 4.
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BDG inequality

Also, for general p > 2, Jensen’s inequality gives us

T p/2 T
(/ b2 dt) < Tp/2_1/ B|P dt
0 0

and therefore

T
E[[MJE? < 19/ /0 E|[br[?] dt

This is how we can bound E | sup |M;|?
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SDEs

In Lecture 4 we saw the problems caused by superlinear
growth in the drift so, following Kloeden & Platen’s book,

we will now restrict attention to SDEs
dsS = CL(St, t) dt + b(St, t) dW

for which there exists a constant K such that

# Lipschitz continuity in space:
a(:z:,t) o a(yvt)‘ T ’b(xvt) o b(yvt)‘ < K ’Qj_y‘

# linear growth bound:
a(z,t)] +[b(z,1)] < K (1+]z])

# square-root continuity in time:

a(z,5) —a(z, 1) +|b(z,s) = b(x,t)] < K (14 |z])\/[s—1]
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SDEs

Theorem: Under the standard conditions, starting from a
fixed Sy, forany T > 0 and any p > 2,

E [sup [S¢P| < o
0,T]

.e. all moments of sup,¢y 4 [Ss| are bounded for all time.

First we construct the SDE for S} for n > 2. [t6’s formula
gives

d(S?) = nsnl (a(St, B dt + b(S;, t) dw)

+ 2 n(n—1) S} b*(S, t) dt
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SDEs

The integral form is S{* = S§ + I1(t) + I2(t) + 13(t) where

t
Li(t) = /nS?la(Ss,s) ds
0

and we have

sup [ Ss|" < [So[" + sup [11(s)[ + sup [I2(s)| + sup [I3(s)]
0,t] 0,t] 0,t] 0,]
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SDEs

By Jensen’s inequality we have

sup |SS|2” < 4 (Sozn + sup |]1(3)|2 + sup ][2(3)]2 + sup [3(3)2>
0,t] 0,t] 0,t] 0,]

Our objective is to establish an inequality of the form
t
BV <a+ 5 [ BV ds
0

for 0 <t <T, where V; = supjy 4 |Ss| and the constants «, 5
dependon T, n, K.

We can then use the Gronwall inequality to achieve our
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SDEs

The first two integrals are fairly easy: using Jensen’s
iInequality again, and |S|P < 1+|S|? for 1 <p<gq, we have

(/Otn S5 E (1 + [S]) dS)

t
t/ (n\SS]n_lK(lJr ]SS\))2 ds
0

2
I{(t)

VAN

VAN

t
< T/ n® K% (3 +4|5]°") ds
0
t
< T/ n® K (34 4V2*") ds
0

The final bound is also an upper bound for I#(s) for s < ¢, S0
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SDEs

Similarly,

I5(t)

VAN

(/ n(n—1) S, 2K2(1 + 5.7
< t/ot (3n(n—1) |Ss|" *K?*(1 + 1331)2)2@13
< T/Ot (Ln(n—1) K2)° (7 +8|S,*") ds
< T/Ot%n(n—l)K2(7+8V52”) ds
and the final bound is an upper bound on supy 4 I3(s).
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SDEs

Finally, for the third we use the Doob inequality and
1t6 isometry to obtain

t
E [sup I3(s)| < 4/ E[n2 Sgn_2K2(1+\SS\)2} ds
0,4 0

t
< 4/ E[n2K2(3—|—4|SSI2”)] ds
0

VAN

t
4/ n® K* (3+4E[V2") ds
0

This concludes the proof for p = 2n and n > 2. For smaller
values of p the result follows from the Holder inequality, as

discussed in lecture 4.
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