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Inequalities

Stochastic numerical analysis requires a lot of tools,
especially a surprisingly large collection of key inequalities.

will introduce them one by one, with simple examples to
show their usefulness

in major applications later, the challenge will be seeing
how to combine them appropriately to accomplish some
task

for the simple inequalities, I’ll give proofs; for the
complex ones I’ll give references

Wikipedia is a great reference source for the
inequalities, and also has a lot of the proofs
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Markov inequality

Given a positive scalar random variable X and a positive
constant x,

P[X ≥ x] ≤ E[X]

x

Proof: let
f(X) =

{
0, X < x

x, X ≥ x

then X ≥ f(X) =⇒ E[X] ≥ E[f(X)] = x P[X ≥ x]

Corollary: (Chebyshev’s inequality when E[X]=0 and p=2)
for a scalar r.v. X, a positive constant x, and p≥1,

P[ |X| ≥ x] ≤ E[ |X|p]
xp

Proof: immediate given that P[ |X| ≥ x] = P[ |X|p ≥ xp]
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Markov inequality

This is useful for bounding extreme behaviour.

For example, suppose Z ∼ N(0, 1). Then, for any even
integer p and 0 < ε ≪ 1, we have

P[ |Z| ≥ ε−1] ≤ εp E[Zp]

which bounds the proportion of large values for Z.

Corollary: suppose ∆W ∼ N(0, h), then for any 0<δ≪1
we have

P[ |∆W | ≥ h1/2−δ] ≤ hpδ E[ |h−1/2∆W |p]
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Markov inequality

In addition, if there are N Brownian increments then

P[ max
n

|∆Wn| ≥ h1/2−δ] ≤
∑

n

P[ |∆Wn| ≥ h1/2−δ]

≤ N hpδ E[ |h−1/2∆W |p]
≤ T hpδ−1

E[ |h−1/2∆W |p]

so if p is chosen so that pδ > 2 then

P[ max
n

|∆Wn| ≥ h1/2−δ] = o(h)
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Extreme behaviour

When dealing with expected values, we need to be
concerned about extreme behaviour if there is a possibility
of these having extreme values.

e.g. what is E
[
log10(human population in 2020)

]
?
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Extreme behaviour

More relevant example: consider SDE

dSt = −S3
t dt+ dWt

starting from S0 = 0, and approximated using Euler method
as

Ŝn+1 = Ŝn − Ŝ3
n h+∆Wn.

with h = 1/N .

What is limN→∞ E[Ŝ2
N ]?
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Extreme behaviour

Putting

vn = − (−1)n 1
2 h

1/2 Ŝn

we get

vn+1 = 4v3n − vn + (−1)n 1
2 h

1/2 ∆Wn

If vn ≥ 2 and |∆Wn| < h−1/2 then

vn+1 ≥ v3n > 2

so, by induction, if v1 ≥ 2 and maxn |∆Wn| < h−1/2 then

vN ≥ 23
N−1

a super-exponential blow-up.
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Extreme behaviour

What is P[v1>2]? This requires ∆W0 > 2h−1/2, and the
probability of this is approximately

1√
8π h

exp
(
−2h−2

)

The probability of then having maxn>0 |∆Wn| < h−1/2

is almost equal to 1 (using results from slide 5).

Hence, for sufficiently large N

E[Ŝ2
N ] ≥ exp

(
−2N2

)
× 23

N−1

Note: log(r.h.s.) = −2N2 + 3N−1 log 2 −→ ∞ as N → ∞,

so E[Ŝ2
N ] → ∞ as N → ∞
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Extreme behaviour

This is a warning – can get extremely bad behaviour from
samples with an extremely small probability.

In practice, probability is so small (in fact zero?) that you
would be unlikely to see it experimentally for small h.

Nevertheless, it’s a real problem for theoretical analysis.

Various ad-hoc fixes:

“clamp” behaviour to limits of ±h−1

clamp drift to ±h−1

use adaptive time-stepping

use drift-implicit approximation

Stoch. NA, Lecture 4 – p. 10



Jensen inequality

This concerns convex functions φ(x), which satisfy

φ
(
(1−λ) x1 + λx2

)
≤ (1−λ) φ(x1) + λ φ(x2)

for any 0 < λ < 1.

There are multiple versions of Jensen’s inequality:

If
∑N

i=1 λi = 1 with 0<λi<1 then

φ

(
N∑

i=1

λi xi

)
≤

N∑

i=1

λi φ(xi)

Proof: by induction using
∑N

i=1 λi xi = (1−λN )
(∑N−1

i=1
λi

1−λN
xi

)
+ λNxN

Stoch. NA, Lecture 4 – p. 11



Jensen inequality

taking λi = N−1 gives

φ

(
N−1

N∑

i=1

xi

)
≤ N−1

N∑

i=1

φ(xi)

for Riemann integrals, this becomes

φ

(
1

b− a

∫ b

a

f(x) dx

)
≤ 1

b− a

∫ b

a

φ(f(x)) dx

finally, for expectations we get

φ
(
E[X]

)
≤ E[φ(X)]
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Jensen inequality

The standard use is for φ(x) ≡ xp, for p ≥ 1:

∣∣∣∣∣N
−1

N∑

i=1

xi

∣∣∣∣∣

p

≤ N−1
N∑

i=1

|xi|p

=⇒
∣∣∣∣∣

N∑

i=1

xi

∣∣∣∣∣

p

≤ Np−1
N∑

i=1

|xi|p

this is sometimes used for small values of N (often 2-4)
and sometimes for N = # timesteps
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Jensen inequality

∣∣∣∣∣
1

b− a

∫ b

a

f(x) dx

∣∣∣∣∣

p

≤ 1

b− a

∫ b

a

|f(x)|p dx

=⇒
∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣

p

≤ (b− a)p−1

∫ b

a

|f(x)|p dx

∣∣E[X]
∣∣p ≤ E

[
|X|p

]

Stoch. NA, Lecture 4 – p. 14



Hölder inequality

For any scalar random variables X,Y , and any p, q > 1 such
that 1/p+ 1/q = 1,

E[ |XY | ] ≤ E[ |X|p ]1/p E[ |Y |q ]1/q

Proof: see Wikipedia – relies on Young’s inequality for
a, b ≥ 0:

a b ≤ ap

p
+

bq

q

Hölder inequality can be compared to the case in which X
and Y are independent, which gives

E[ |XY | ] = E[ |X| ] E[ |Y | ]
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Hölder inequality

Hölder inequality is typically used for p = q = 2 in which
case it reduces to simply

E[ |XY | ] ≤
√
E[ |X|2 ] E[ |Y |2 ]

which we’ve already proved by other means.

Sometimes used when 1/p = δ, 1/q = 1−δ, δ ≪ 1, giving

E[ |XY | ] ≤ E[ |X|1/δ ]δ E[ |Y |1/(1−δ) ](1−δ)

Helpful when, for all p, E[ |X|p ] is uniformly bounded for all

h, and for all q > 1, E[ |Y |q ] = O(h1/2). Then, for any ε>0,
we get

E[ |XY | ] = o(h1/2−ε)
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Hölder inequality

Another use: suppose

r = (1−λ) r1 + λ r2, 0<λ<1.

then let 1/p = 1−λ, 1/q = λ, and set

X = |Z|(1−λ) r1 , Y = |Z|λ r2 ,

Hölder inequality then gives

E[ |Z|r ] ≤ E[ |Z|r1 ](1−λ)
E[ |Z|r2 ]λ

so if E[ |Z|r1 ] = O(hα1), E[ |Z|r2 ] = O(hα2), then

E[ |Z|r ] = O(hα), with α = (1−λ)α1 + λα2
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Grönwall inequality

Continuous versions:

If β(s) is continuous and non-negative and

u(t) ≤ α(t) +

∫ t

0

β(s)u(s) ds

then

u(t) ≤ α(t) +

∫ t

0

α(s) β(s) exp

(∫ t

s

β(r) dr

)
ds

when α, β are constants, it simplifies to

u(t) ≤ α exp(βt)
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Grönwall inequality

Discrete version: if β is non-negative and

un ≤ α +

n−1∑

j=0

β uj

then un ≤ α exp(βn)

Proof by induction: if true for 0 ≤ j < n then

un ≤ α


1 +

n−1∑

j=0

β exp(βj)




= α

(
1 +

β (exp(βn)− 1)

exp(β)− 1

)

≤ α exp(βn)
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Grönwall inequality

The Grönwall inequality turns out to be essential in the
analysis of SDE approximations.

We will prove that the errors satisfy continuous integral
(or discrete summation) inequalities, and then use the
Grönwall inequality to turn these into bounds on the error.
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