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Euler-Maruyama method

The simplest approximation for the scalar SDE

dS = a(S, t) dt+ b(S, t) dW

is the forward Euler scheme, which is known as the
Euler-Maruyama approximation when applied to SDEs:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Here h is the timestep, Ŝn is the approximation to S(nh) and
the ∆Wn are i.i.d. N(0, h) Brownian increments.
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Euler-Maruyama method

For ODEs, the forward Euler method has O(h) accuracy,
and other more accurate methods would usually be
preferred.

However, SDEs are very much harder to approximate so
the Euler-Maruyama method is used widely in practice.

Numerical analysis is also very difficult and even the
definition of “accuracy” is tricky.
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Weak convergence

In most applications, we are mostly concerned with weak
errors, the error in the expected value of some output
quantity, due to using a finite timestep h.

For an output which is a function of S(T ), the weak error is

E[f(S(T ))]− E[f(ŜT/h)]

For an output which depends on the whole path, the weak
error is

E[f(S)]− E[f̂(Ŝ)]

where f(S) is a function of the entire path S(t), and f̂(Ŝ) is a
corresponding approximation using the whole discrete path.
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Weak convergence

Key theoretical result (Bally and Talay, 1995):

If p(S) is the p.d.f. for S(T ) and p̂(S) is the p.d.f. for ŜT/h

computed using the Euler-Maruyama approximation,
then under certain conditions on a(S, t) and b(S, t)
(in particular that they are C∞ with bounded derivatives)

p(S)− p̂(S) = O(h)

and hence

E[f(S(T ))]− E[f(ŜT/h)] = O(h)

We will not go through the analysis – will instead focus on
alternative strong convergence.
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Weak convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

S0 = 100, r = 0.05, σ = 0.5, T = 1

Financial call option: E[exp(−rT )max(0, S(T )−K)]
with K=110 – there is a known analytic value for this.

Plot shows weak error versus analytic expectation when

using 108 paths, and also Monte Carlo error (3 standard
deviations)
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Weak convergence
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Weak convergence

Previous plot showed difference between exact expectation
and numerical approximation.

What if the exact solution is unknown? Compare
approximations with timesteps h and 2h.

If

E[f(S(T ))]− E[f(Ŝh
T/h)] ≈ a h

then

E[f(S(T ))]− E[f(Ŝ2h
T/2h)] ≈ 2 a h

and so

E[f(Ŝh
T/h)]− E[f(Ŝ2h

T/2h)] ≈ a h
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Weak convergence

To minimise the number of paths that need to be simulated,
best to use same driving Brownian path when doing 2h
and h approximations – i.e. take Brownian increments for h
simulation and sum in pairs to get Brownian increments for
2h simulation.

The variance is lower because the h and 2h paths are close
to each other (strong convergence).

In a later lecture, this forms the basis for the Multilevel
Monte Carlo method (Giles, 2006)
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Weak convergence

10
-2

10
-1

10
-3

10
-2

10
-1

Weak convergence -- difference from 2h approximation

h

E
rr

or

 

 
 Weak error
 MC error

Stoch. NA, Lecture 2 – p. 10



Strong convergence

Strong convergence looks instead at the average error in
each individual path, either at a final time:

E

[ ∣∣∣S(T )− ŜT/h

∣∣∣
]

or

(
E

[(
S(T )− ŜT/h

)2
])1/2

or a maximum over the path:

E

[
max
n

∣∣∣S(tn)− Ŝn

∣∣∣
]

or

(
E

[
max
n

(
S(tn)− Ŝn

)2
])1/2

The main theoretical result (Kloeden & Platen 1992) is that
for the Euler-Maruyama method under certain conditions on

a(S, t) and b(S, t) these are both O(
√
h).

We will do the full analysis in lecture 6.
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Strong convergence

Thus, each approximate path deviates by O(
√
h) from its

true path.

How can the weak error be O(h)? Because the error

S(T )− ŜT/h

has mean O(h) even though the r.m.s. is O(
√
h).

(In fact to leading order it is normally distributed with zero
mean and variance O(h).)
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Strong convergence

Numerical demonstration based on same Geometric
Brownian Motion.

Plot shows two curves, one showing the difference from the
true solution

S(T ) = S0 exp
(
(r− 1

2σ
2)T + σW (T )

)

and the other showing the difference from the 2h
approximation
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Strong convergence
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Mean Square Error

If the true option value is V = E[f ]

and the discrete approximation is V̂ = E[f̂ ]

and the Monte Carlo estimate is Ŷ =
1

N

N∑

n=1

f̂ (n)

the Mean Square Error is

E

[(
Ŷ − V

)2
]

= E

[(
Ŷ −E[f̂ ] + E[f̂ ]−E[f ]

)2
]

= E

[
(Ŷ −E[f̂ ])2

]
+ (E[f̂ ]−E[f ])2

= N−1
V[f̂ ] +

(
E[f̂ ]−E[f ]

)2
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Mean Square Error

If there are M timesteps, the computational cost is
proportional to C = NM and the MSE is approximately

aN−1 + bM−2 = aN−1 + bC−2N2.

– can optimise N for a given accuracy.

To achieve a RMS error of ε requires h = O(ε), and

N = O(ε−2) so the total cost is O(ε−3).
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Milstein Method

Starting from the integral equation:

S(t) = S(0) +

∫ t

0

a(S(s), s) ds+

∫ t

0

b(S(s), s) dW (s),

approximating this on interval [0, h] using

a(S(t), t) ≈ a(S(0), 0), b(S(t), t) ≈ b(S(0), 0)

gives Euler-Maruyama method for first timestep

Ŝ1 = Ŝ0 + a0 h+ b0∆W0.
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Milstein Method

To leading order,

S(t) = S(0) + b(S(0), 0)W (t) + O(h)

and hence

b(S(t), t)) = b(S(0), 0) + b′(S(0), 0) (S(t)− S(0)) +O(h)

= b(S(0), 0) + b′(S(0), 0) b(S(0), 0) W (t) +O(h)

This then leads to

S(h) = S(0) + a0 h+ b0W (h) + b′0 b0

∫ h

0

W (t) dW (t) +O(h3/2)

where a0, b0, b
′

0 are all evaluated at (S(0), 0).
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Milstein Method

Already shown that

∫ h

0

W (t) dW (t) = 1
2

(
W 2(h)− h

)

which then gives us the Milstein scheme:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

+ 1
2 b

′(Ŝn, tn) b(Ŝn, tn)
(
∆W 2

n − h
)

The weak error is still O(h) for Lipschitz outputs but the
strong error is now O(h).

Stoch. NA, Lecture 2 – p. 19



Strong convergence
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Strong convergence
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Predictor-Corrector Method

Predictor step:

Ŝ
(p)
n+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Corrector step:

Ŝn+1 = Ŝn + 1
2

(
a(Ŝn, tn) + a(Ŝ

(p)
n+1, tn+1)

)
h+ b(Ŝn, tn)∆Wn

The weak error is O(h) for Lipschitz outputs, and the strong

error is O(h1/2). Advantage of this approximation is that it is

O(h2) when b ≡ 0, so good for applications when b ≪ a.

Generalisations of this are mentioned in the book by
Kloeden & Platen.
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Implicit Euler Method

Nonlinear version:

Ŝn+1 = Ŝn + a(Ŝn+1, tn)h+ b(Ŝn, tn)∆Wn

Linearised version:

Ŝn+1 = Ŝn+
(
a(Ŝn, tn) + a′(Ŝn, tn)(Ŝn+1−Ŝn)

)
h+ b(Ŝn, tn)∆Wn

Again, the weak error is O(h), strong error is O(h1/2).

Advantage of these is that they are stable for applications
with rapid linear or nonlinear reversion:

dSt = −κSt dt+ σ dWt

dSt = −κS3
t dt+ σ St dWt
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