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Feynman-Kac formula

Suppose that u(x , t) satisfies the parabolic PDE

∂u

∂t
+
∑

j

aj
∂u

∂xj
+ 1

2

∑

j ,k,l

bjlbkl
∂2u

∂xj∂xk
− V u + f = 0

in bounded domain D, subject to u(x , t) = g(x , t) on the boundary ∂D.

It will be assumed that f (x , t),V (x , t), a(x , t), b(x , t) are all Lipschitz
continuous, and g(x , t) is continuously twice-differentiable.
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Feynman-Kac formula

Feynman and Kac proved that u(x , t) can also be expressed as

u(x , t) = E

[∫ τ

t

E (t, s) f (Xs , s)ds + E (t, τ) g(Xτ , τ) | Xt = x

]

where Xt satisfies the SDE

dXt = a(Xt , t)dt + b(Xt , t)dWt ,

with Wt being a Brownian motion with independent components,
τ is the first time at which Xt leaves D, and

E (t0, t1) = exp

(
−

∫ t1

t0

V (Xt , t)dt

)
.

Note: in the special case in which f (x , t)=0, g(x , t)= t, V (x , t)=0
uexit(x , t) is the expected exit time.
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Feynman-Kac formula
Proof: suppose that u(x , t) satisfies the PDE, and Xs satisfies the SDE
starting from Xt = x . Then, for t ≤ s ≤ τ define

Y (s) = E (t, s) u(Xs , s) +

∫ s

t

E (t, r) f (Xr , r)dr

dE = −V (Xs , s)E ds, and therefore Itô calculus gives

dY = E



−V u ds +

∑

j

∂u

∂xj

(
aj ds +

∑

k

bjkdWk

)
+

∂u

∂t
ds

+ 1
2

∑

j ,k,l

bjlbkl
∂2u

∂xj∂xk
ds + f ds





= E
∑

j ,k

∂u

∂xj
bjkdWk .
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Feynman-Kac formula

Hence, by integrating we get

Y (τ) = Y (t) +

∫ τ

t

E (t, τ)
∑

j ,k

∂u

∂xj
bjk dWk

Taking expectations, and noting that u(Xτ , τ) = g(Xτ , τ) and Xt = x ,
we then get

E

[
E (t, τ) g(Xτ , τ) +

∫ τ

t

E (t, r) f (Xr , r)dr

]
= E[Y (τ)]

= E[Y (t)]

= u(x , t)

Mike Giles, Francisco Bernal (Oxford) Feynman-Kac MLMC July 6, 2015 6 / 1



Feynman-Kac formula

Why is this Feynman-Kac formula useful?

In high dimensions, approximating the parabolic PDE can be expensive
because the cost increases exponentially – curse of dimensionality

The cost of Monte Carlo simulation for the SDE scales linearly
(or possibly quadratically) with dimension
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Numerical approximation

An Euler-Maruyama discretisation with uniform timestep h gives

X̂tn+1 = X̂tn + a(X̂tn , tn) h + b(X̂tn , tn)∆Wn,

with initial data X̂0=x at time t.

If X̂ (t) is the piecewise-constant interpolant, we then have

û(x , t) = E

[∫ τ̂

t

Ê (t, s) f (X̂ (s), s)ds + Ê (t, τ̂) g(X̂ (τ), τ̂ )

]
.

with τ̂ being the exit time, and

Ê (t0, t1) = exp

(
−

∫ t1

t0

V (X̂t , t)dt

)
.
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Prior work – Gobet & Menozzi

The Euler-Maruyama method has strong accuracy

(
E

[
sup

[0,min(τ,τ̂)]
‖Xt − X̂ (t)‖2

])1/2

= O(h1/2| log h|1/2),

and Gobet & Menozzi (2007) proved it has weak error

u(x , t)− û(x , t) = O(h1/2).

For standard Monte Carlo method, ε RMS accuracy needs O(ε−2) paths,
each with h = O(ε2), so total cost is O(ε−4)

Gobet & Menozzi (2010) reduced this to O(ε−3) by shifting the boundary
by O(h1/2) to improve the weak error to O(h).
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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents an approximation using timestep hℓ = 2−ℓ h0,
with weak convergence

E[P̂ℓ − P ] = O(2−α ℓ).

If Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1], based on Nℓ samples,
with variance

V[Ŷℓ] = O(N−1
ℓ 2−β ℓ)

and expected cost
E[Cℓ] = O(Nℓ 2

γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2
)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.
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Prior work – Higham

Higham et al (2013) developed a MLMC treatment of the exit time
problem:

Euler-Maruyama discretisation

O(h
1/2
ℓ ) weak convergence =⇒ α = 1/2

V[P̂ℓ−P̂ℓ−1] = O(h
1/2
ℓ | log hℓ|

1/2) =⇒ β ≈ 1/2

O(h−1
ℓ ) cost per path =⇒ γ = 1

Hence, overall cost is approximately O(ε−3).

Gobet & Menozzi’s boundary treatment would improve this to O(ε−2.5).

G & Primozic (2011) developed O(ε−2) treatment using Milstein
discretisation for SDEs with special commutativity property.
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MLMC challenge
When coarse or fine path exits the domain, the other is within O(h1/2).

However, there is a O(h1/2) probability that it will not exit the domain
until much later =⇒ Vℓ ≈ O(h1/2).

t
0 0.5 1 1.5 2

x
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4

coarse path
fine path
boundary
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MLMC challenge

How can we do better?

Similar to previous work on digital options, and also used by Dickmann &
Schweizer, split second path into multiple copies, and average their
outputs to approximate the conditional expectation.

O(h1/2) expected time to exit for second path, so can afford to use
O(h−1/2) copies of second path.

This gives an approximation to the conditional expectation resulting in
P̂ℓ − P̂ℓ−1 ≈ O(h1/2), so Vℓ ≈ O(h).

This gives α = 1/2, β ≈ 1, γ ≈ 1 and the complexity is O(ε−2 | log ε|3).
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Numerical Analysis
Assumption 1: There is a Lipschitz constant Lf such that

|f (x , t)− f (y , s)| ≤ Lf (‖x− y‖2 + |t−s|) , ∀(x , t), (y , s) ∈ D,

and there are similar Lipschitz constants Lg , LV , La, Lb, Lu , Lexit for
g ,V , a, b, u, uexit . In addition, g ∈ C 2,1(D), with a bounded Hessian
Hg ≡ ∂2g/∂x2.

Comment: assumption about Lu , Lexit may require the boundary ∂D
to be smooth, or at least not have re-entrant corners.

Assumption 2: There is a unit computational cost for each timestep, and
in determining whether or not X̂tn+1 ∈D.

Assumption 3: There exist constants Cu and Cexit s.t. for all (x , t) ∈ D

|u(x , t)−û(x , t)| ≤ Cu h1/2

|uexit(x , t)−ûexit(x , t)| ≤ Cexit h
1/2
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Numerical Analysis
Defining the output functional

Pt0 =

∫ τ

t0

E (t0, s) f (Xs , s)ds + E (t0, τ) g(Xτ , τ),

we get

Lemma

Given Assumption 1, there exists C such that for any (x0, t0) ∈ D

V[Pt0 |Xt0 =x0] ≤ C E[τ−t0 |Xt0 =x0].

By Itô calculus,

d

(
E (t0, s) g(Xs , s)

)
=

E (t0, s)
((

−V g + ġ + (∇g)T a+ 1
2 trace(b

THg b)
)
ds + (∇g)T b dWs

)

with a, b, g , ġ ≡ ∂g/∂t, ∇g , Hg , all evaluated at (Xs , s).
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Numerical Analysis

Hence, Pt0 − g(x0, t0) = p(1) + p(2), where

p(1) =

∫ τ

t0

E (t0, s)
(
f − V g + ġ + (∇g)T a + 1

2 trace(b
THg b)

)
ds,

p(2) =

∫ τ

t0

E (t0, s) (∇g)T b dWs .

Considering the second term, since E (t0, s) ≤ exp(T‖V ‖∞), we have

E[(p(2))2] = E

[∫ τ

t0

(E (t0, s))
2 ‖(∇g)T b‖22 ds

]

≤ exp(2T‖V ‖∞) ‖∇g‖22,∞‖b‖22,∞ E[τ−t0 |Xt0 =x0],

where ‖b‖2,∞, ‖∇g‖2,∞ are the maximum values of ‖b‖2, ‖∇g‖2 over D.

The first term is handled similarly to complete the proof.
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Numerical Analysis

The following is a standard result:

Lemma

If W and Z are independent random variables, then

Y = M−1
M∑

m=1

f (W ,Z (m))

with independent samples W and Z (m) is an unbiased estimator for

E [f (W ,Z )] and its variance is

V[Y ] = V

[
E[f (W ,Z ) |W ]

]
+M−1

E

[
V[f (W ,Z ) |W ]

]
.
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Numerical Analysis
Proof: For a given W , Y has expected value E[f (W ,Z ) |W ] and
variance M−1

V[f (W ,Z ) |W ], and therefore

E
[
Y 2 |W

]
=
(
E[f (W ,Z ) |W ]

)2
+M−1

V[f (W ,Z ) |W ]

Taking the expectation over W then gives

E[Y ] = E

[
E[f (W ,Z ) |W ]

]
= E[f (W ,Z )],

E
[
Y 2
]

= E

[
(E[f (W ,Z ) |W ])2

]
+M−1

E

[
V[f (W ,Z ) |W ]

]
,

from which it follows that

V[Y ] = E
[
Y 2
]
−
(
E[Y ]

)2

= V

[
E[f (W ,Z ) |W ]

]
+M−1

E

[
V[f (W ,Z ) |W ]

]
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Numerical Analysis
Let τ be the exit time of the first of a pair of coarse/fine paths,
and τ be τ rounded up to the end of a coarse timestep.

In our application W represents the Brownian path up to τ ,
and Z is the Brownian path therafter.

t
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Numerical Analysis

Lemma

Given Assumptions 1 and 3, we have

E[ sup
[0,τ ]

‖X̂ℓ,t−X̂ℓ−1,t‖
2 ]1/2 = O(h

1/2
ℓ−1 | log hℓ−1|

1/2)

E[ ‖X̂ℓ,τ−X̂ℓ−1,τ‖
2 ]1/2 = O(h

1/2
ℓ−1 | log hℓ−1|

1/2)

=⇒ V

[
E[P̂ℓ−P̂ℓ−1 |W ]

]
= O(hℓ−1| log hℓ−1|)

The key here is that if 0 ≤ t ≤ τ then

P0 = E (0, t)

{∫ τ

t

E (t, s) f (Xs , s)ds + E (t0, τ) g(Xτ , τ)

}

=⇒ E[P0 | Ft ] = E (0, t) E[Pt | Ft ] = E (0, t) u(Xt , t)

Something similar for the discrete approximation yields

E[P̂ℓ−P̂ℓ−1 |W ] = O(h
1/2
ℓ−1 | log hℓ−1|

1/2)
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Numerical Analysis

Lemma

Given Assumptions 1 and 3,

E

[
V[P̂ℓ−P̂ℓ−1 |W ]

]
= O(h

1/2
ℓ−1| log hℓ−1|

1/2)

The key here is that, similar to the SDE analysis, there exists C such that

V[P̂ℓ−P̂ℓ−1 |W ] ≤ C E [ |τ̂ℓ−τ̂ℓ−1| |W ])

= O(h
1/2
ℓ−1 | log hℓ−1|

1/2)
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Numerical Analysis

Corollary

Under the given assumptions, an RMS error of ε can be achieved with an

O(ε−2| log ε|3) expected computational cost.

The proof is slightly non-standard because of log terms.

hℓ = 4−ℓh0

Mℓ=⌈2ℓ/ℓ1/2⌉ paths in the splitting estimator

expected cost is O(h−1
ℓ )

variance Vℓ = O(hℓ | log hℓ|) = O(hℓ ℓ).

This eventually gives the desired cost bound.
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Conclusions

conditional expectation / splitting is a useful technique in
MLMC estimation

in Feynmac-Kac application it improves the MLMC variance
from approximately O(h1/2) to O(h), reducing the complexity
from O(ε−3) to O(ε−2| log ε|3)

numerical analysis is now complete but relies on key assumption
of uniform O(h1/2) weak convergence – an open problem

Webpages:
people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/mlmc community.html

people.maths.ox.ac.uk/gilesm/acta/
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