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Mean-square stability analysis

Today we are looking at the numerical analysis in

D.J. Higham. ’Mean-square and asymptotic stability of the
stochastic theta method’. SIAM Journal of Numerical
Analysis, 38(3):753-769, 2000

M.B. Giles, C. Reisinger. ’Stochastic finite differences and
multilevel Monte Carlo for a class of SPDEs in finance’.
SIAM Journal of Financial Mathematics, 3(1):572-592,
2012.

What’s new?

new numerical methods

new definition and analysis of numerical stability
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Stochastic theta method

The stochastic theta method for approximating the SDE

dXt = f(Xt) dt+ g(Xt) dWt

is

X̂n+1 = X̂n + (1−θ)f(X̂n)h+ θ f(X̂n+1)h+ g(X̂n) ∆Wn

θ = 0 is Euler-Maruyama method

θ = 1 is drift-implicit method

θ = 1/2 is stochastic equivalent of Crank-Nicholson
method
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ODE stability analysis

The linear ODE:

dXt = −λXt dt

has a solution which decays exponentially if λ > 0.

The numerical approximation

X̂n+1 = X̂n − (1−θ)λh X̂n − θ λ h X̂n+1

also decays exponentially if

∣∣∣∣
1− (1−θ)λh

1 + θλ h

∣∣∣∣ < 1

so need either θ ≥ 1/2, or λh < 2/(1−2θ).
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SDE stability analysis

What about the corresponding SDE?

dXt = −λXt dt+ µXt dWt

First of all, how does the analytic solution behave?

Itô calculus gives us

dX2
t = −2(λ− 1

2
µ2)X2

t dt+ 2µX2
t dWt

and hence

d
(
E[X2

t ]
)
= −2 (λ− 1

2
µ2) E[X2

t ] dt

so E[X2
t ] decays exponentially if λ > 1

2
µ2
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SDE stability analysis

The numerical approximation is

X̂n+1 = X̂n − (1−θ)λh X̂n − θ λ h X̂n+1 + µ X̂n∆Wn

Setting ∆Wn=h1/2Zn where Zn is a standard Normal r.v.,
we can re-arrange to get

X̂n+1 = (a+ b Zn) X̂n

where

a =
1− (1−θ)λh

1 + θλ h
, b =

µ h1/2

1 + θλ h
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SDE stability analysis

Since

X̂2
n+1 = (a+ b Zn)

2 X̂2
n

it follows that

E[X̂2
n+1] = (a2+b2) E[X̂2

n]

so E[X̂2
n] decays exponentially iff a2+b2 < 1, which

corresponds to

(1−2 θ)λ2 h < 2 (λ− 1

2
µ2)

If λ− 1

2
µ2 > 0, then it’s unconditionally stable for θ≥1/2,

while for θ<1/2 the timestep stability limit is

h <
2 (λ− 1

2
µ2)
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SDE stability analysis

Generalisation to vector systems – the algorithm

X̂n+1 = (A+ ZnB) X̂n

with scalar Zn, vector X̂n and matrices A,B, leads to

X̂T
n+1X̂n+1 = X̂T

n (A+ ZnB)T (A+ ZnB) X̂n

and hence

E

[
X̂T

n+1X̂n+1

]
= E

[
X̂T

n (A
TA+BTB)X̂n

]

ATA+BTB is symmetric and positive (semi-)definite, so
a sufficient condition for mean-square stability is that the
largest eigenvalue is less than 1.
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SDE stability analysis

It can be further generalised to

X̂n+1 = (A+ ZnB +WnC) X̂n

where Wn is an additional, independent Normal r.v.

This leads to

E

[
X̂T

n+1X̂n+1

]
= E

[
X̂T

n (A
TA+BTB+CTC)X̂n

]

with a similar test for mean-square stability.
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Parabolic SPDE

Unusual parabolic SPDE arises in CDO modelling
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt+

1

2

∂2p

∂x2
dt+

√
ρ
∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x, t) is probability density function

dW term corresponds to systemic risk

∂2p/∂x2 comes from idiosyncratic risk
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Parabolic SPDE

Milstein and central difference discretisation leads to

pn+1

j = pnj − µ k +
√
ρ k Zn

2h

(
pnj+1 − pnj−1

)

+
(1−ρ) k + ρ k Z2

n

2h2
(
pnj+1 − 2pnj + pnj−1

)

where k is the timestep, h is the uniform grid spacing, and
Zn ∼ N(0, 1),

Considering a Fourier mode

pnj = gn exp(ijθ), |θ| ≤ π

leads to . . .
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Parabolic SPDE

gn+1 =
(
a(θ) + b(θ)Zn + c(θ)Z2

n

)
gn,

where

a(θ) = 1− i µ k

h
sin θ − 2 (1−ρ) k

h2
sin2 θ

2
,

b(θ) = − i
√
ρ k

h
sin θ,

c(θ) = − 2 ρ k

h2
sin2 θ

2
.
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Parabolic SPDE

Following Higham’s mean-square stability analysis
approach,

E[ |gn+1|2] = E
[
(a+ b Zn + c Z2

n)(a
∗ + b∗Zn + c∗Z2

n) |gn|2
]

=
(
|a+c|2 + |b|2 + 2|c|2

)
E
[
|gn|2

]

so stability requires |a+c|2 + |b|2 + 2|c|2 ≤ 1 for all θ,
which leads to a timestep stability limit:

µ2k ≤ 1− ρ,

k

h2
≤ (1 + 2ρ2)−1.
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Parabolic SPDE

This can be extended to finite domains using matrix stability
analysis, writing the discrete equations as

Pn+1 = (A+B Zn + C Z2
n) Pn, where

A = I−µ k

2h
D1+

(1−ρ) k

2h2
D2, B = −

√
ρ k

2h
D1, C =

ρ k

2h2
D2,

and D1 and D2 look like

D1 =




0 1

−1 0 1

−1 0 1

−1 0


 , D2 =




−2 1

1 −2 1

1 −2 1

1 −2


 .
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Parabolic SPDE

E[PT
n+1Pn+1] = E

[
PT
n (AT+BT Zn+CT Z2

n)(A+B Zn+C Z2
n) Pn

]

= E
[
PT
n

(
(A+C)T (A+C) +BTB + 2CTC

)
Pn

]

D1 is anti-symmetric and D2 is symmetric, and

D1D2 −D2D1 = E1 − E2, D2
1 = D3 + E1 + E2

where D3 looks like

D3 =




−3 0 1

0 −2 0 1

1 0 −2 0

1 0 −3


 ,
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Parabolic SPDE

and E1 and E2 are zero apart from one corner element,

E1 =




2

 , E2 =




2




This leads to

E
[
V T
n

(
(A+C)T (A+C) + BTB + 2CTC

)
Vn

]

= E
[
V T
n MVn

]
− (e1 + e2)E[(v

n
1 )

2]− (e1 − e2)E[(v
n
J−1)

2],

where e1 and e2 are scalars and

M = I − k

h2
D2 +

k2

4h4
D2

2 −
(

ρk

4h2
+

µ2k2

4h2

)
D3.
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Parabolic SPDE

It can be verified that the mth eigenvector of M is a Fourier
mode and the associated eigenvalue is

|a(θm)+c(θm)|2 + |b(θm)|2 + 2|c(θm)|2

where a(θ), b(θ), c(θ) are the same functions as before.

In the limit h, k/h → 0, e1±e2 > 0, and therefore the Fourier
stability condition

sup
θ

{
|a(θ)+c(θ)|2 + |b(θ)|2 + 2|c(θ)|2

}
≤ 1

is also a sufficient condition for mean-square matrix stability.
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Parabolic SPDE

This turns out to be a good application for multilevel MC:

coarsest level of approximation uses 1 timestep per
quarter, and 10 spatial points

each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to
numerical stability constraints

computational cost Cℓ ∝ 8ℓ

numerical results suggest variance Vℓ ∝ 8−ℓ

can prove Vℓ ∝ 16−ℓ when no absorbing boundary
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:

0 1 2 3

10
2

10
3

10
4

10
5

10
6

level l

N
l

 

 

10
-2

10
0

10
1

10
2

10
3

accuracy ε

ε2  C
os

t

 

 
Std MC
MLMC

ε=0.002
ε=0.005
ε=0.01
ε=0.02

Stoch. NA, Lecture 11 – p. 20


	Mean-square stability analysis
	Stochastic theta method
	ODE stability analysis
	SDE stability analysis
	SDE stability analysis
	SDE stability analysis
	SDE stability analysis
	SDE stability analysis
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE
	Parabolic SPDE

