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Milstein discretisation

The Milstein discretisation of the SDE

dSi(t) = ai(S) dt+
∑

j

bij(S) dWj(t), 0 < t < T

is

Ŝi,n+1 = Ŝi,n + ai(Ŝn)∆t+
∑

j

bij(Ŝn)∆Wj,n

+
∑

j,k

cijk(Ŝn)
(
∆Wj,n∆Wk,n − Ωjk ∆t− Ajk,n

)

where Ωjk is the correlation, cijk ≡ 1
2

∑

l

∂bij
∂Sl

blk, and

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk − (Wk(t)−Wk(tn)) dWj
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Standard Multilevel approach

To estimate E[P ], where the payoff P =f(ST ) can be

approximated by P̂ℓ using 2ℓ uniform timesteps, we use

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1].

E[P̂ℓ−P̂ℓ−1] is estimated using Nℓ simulations with same

W (t) for both P̂ℓ and P̂ℓ−1,

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂

(i)
ℓ −P̂

(i)
ℓ−1

)

Because of strong convergence, on finer levels V[P̂ℓ−P̂ℓ−1]
is small and so few paths are required.
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Modified Multilevel approach

Sometimes better to use a different approximation for P̂ℓ

in E[P̂ℓ−P̂ℓ−1] and E[P̂ℓ+1−P̂ℓ]. The decomposition

E[P̂ f
L ] = E[P̂ f

0 ] +

L∑

ℓ=1

E[P̂ f
ℓ −P̂ c

ℓ−1]

is still a valid telescoping sum provided E[P̂ f
ℓ ] = E[P̂ c

ℓ ].

In this work, we use P̂ c
ℓ = f(Ŝc

ℓ) and

P̂ f
ℓ = 1

2

(
f(Ŝf1

ℓ ) + f(Ŝf2
ℓ )
)

where f1 is the fine path, and f2 is an “antithetic twin”.
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Antithetic Multilevel estimator

Lemma 0.1 If f ∈ C2(Rd,R) and there exist constants

L1, L2 such that for all S ∈ Rd

∥∥∥∥
∂f

∂S

∥∥∥∥ ≤ L1,

∥∥∥∥
∂2f

∂S2

∥∥∥∥ ≤ L2.

then

E

[(
1
2(f(Ŝ

f1)+f(Ŝf2))− f(Ŝc)
)2]

≤ 2L2
1 E

[∥∥∥12(Ŝf1+Ŝf2)− Ŝc
∥∥∥
2
]

+ 1
32 L

2
2 E

[∥∥∥Ŝf1 − Ŝf2)
∥∥∥
4
]
.
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Antithetic Multilevel estimator

Proof Defining S
f ≡ 1

2
(Ŝf1+Ŝf2), Taylor expansion gives

1

2
(f(Ŝf1) + f(Ŝf2)) = f(S

f
) + 1

8
(Ŝf1− Ŝf2)T

∂2f

∂S2
(ξ1) (Ŝ

f1− Ŝf2)

=⇒ 1

2
(f(Ŝf1) + f(Ŝf2))− f(Ŝc)

=
∂f

∂S

T

(ξ2) (S
f− Ŝc) + 1

8
(Ŝf1− Ŝf2)T

∂2f

∂S2
(ξ1) (Ŝ

f1− Ŝf2).

It follows that

∣∣∣1
2
(f(Ŝf1) + f(Ŝf2))− f(Ŝc)

∣∣∣ ≤ L1

∥∥∥Sf− Ŝc
∥∥∥+ 1

8
L2

∥∥∥Ŝf1− Ŝf2
∥∥∥
2

and squaring and taking the expectation gives the result. �
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Clark & Cameron problem

In their 1980 paper, Clark & Cameron considered the model
problem:

dX = dW1

dY = X dW2

for independent Brownian paths W1,W2 and X(0)=Y (0)=0.

This can be integrated to give X(t) = W1(t) and

Y (t) =

∫ t

0

W1(s) dW2(s)

= 1
2 W1(t)W2(t) +

1
2

∫ t

0

W1(s) dW2(s)−W2(s) dW1(s)
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Clark & Cameron problem

If we consider a set of times tn = nh, then we get

Y (tn+1) = Y (tn) +X(tn)∆W2,n + 1
2∆W1,n∆W2,n + 1

2An,

where ∆Wj,n ≡ Wj(tn+1)−Wj(tn) and

An =

∫ tn+1

tn

W1(s) dW2(s)−W2(s) dW1(s).

This matches exactly the Milstein discretisation – i.e. the
Milstein discretisation is exact for this problem
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Clark & Cameron problem

Summing over n gives

Y (T ) =
∑

n

(
X(tn)∆W2,n + 1

2∆W1,n∆W2,n + 1
2An

)

Key point of their paper: conditional on ∆W increments,

E [Y (T ) |∆W ] =
∑

n

(
X(tn)∆W2,n + 1

2∆W1,n∆W2,n

)

V [Y (T ) |∆W ] = 1
4

∑

n

V[An] = O(∆t)

Hence, any numerical discretisation which uses only
Brownian increments cannot in general achieve better than

O(
√
∆t) strong convergence.
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Clark & Cameron problem

If An is not known, best approximation sets it to zero,
– equivalent to a piecewise linear interpolation of the driving
Brownian path.

 

 

n n+1 n+2

W

Wf

Wc

Coarse and fine paths use different interpolations

Y f − Y c =
∑

n

An =⇒ V[Y f−Y c] = O(∆t)
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Clark & Cameron problem

Fine path “antithetic twin” swaps Brownian increments for
odd and even timesteps – average of two piecewise linear
Brownian paths matches coarse one

 

 

n n+1 n+2

W

Wf1

Wf2

Wc

Af2
n = −Af1

n =⇒ (Y f2 − Y c) = −(Y f1 − Y c)

Hence 1
2(Y

f1+Y f2) = Y c
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Clark & Cameron problem

If the payoff function f(X,Y ) is twice-differentiable,

1
2

(
f(X,Y f1) + f(X,Y f2)

)
− f(X,Y c) = 1

2

∂2f

∂Y 2
(Y f1−Y c)2

= O(∆t)

Hence, V[P̂ℓ−P̂ℓ−1] = O(∆t2) – much better than before.

If f(X,Y ) is Lipschitz and twice-differentiable except on K,

and (X,Y c) is within O(
√
∆t) of K with probability O(

√
∆t),

then a local analysis gives V[P̂ℓ−P̂ℓ−1] = O(∆t3/2)
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Generalisation

For the general SDE

dSi(t) = ai(S) dt+
∑

j

bij(S) dWj(t), 0 < t < T

we define the driving Brownian paths in the same way:

fine path W f1(t) is piecewise linear interpolation with
interval ∆t/2

fine path W f2(t) is “antithetic twin”, swapping odd and
even increments

coarse path W c(t) is piecewise linear interpolation with
interval ∆t, and also average of the two fine paths
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Generalisation

Assumptions: a(S) and b(S) both twice differentiable
with usual uniform Lipschitz bounds, and also uniformly
bounded second derivatives.

Lemma 0.2 For all p ≥ 1, there exists Kp such that

E

[
max

0≤n≤N
‖Ŝc

n‖p
]

≤ Kp,

E

[
max

0≤n≤N
‖Ŝf1

n ‖p
]

≤ Kp,

E

[
max

0≤n≤N
‖Ŝf2

n ‖p
]

≤ Kp.

Similar bounds hold for a(S) and b(S).
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Generalisation

Lemma 0.3 For all p ≥ 1, there exists Kp such that

E

[
max

0≤n≤N
‖Ŝc

n − S(tn)‖p
]
≤ Kp∆tp/2

Corollary 0.4 For all p ≥ 1, there exists Kp such that

E

[
max

0≤n≤N
‖Ŝf1

n − Ŝc
n‖p
]

≤ Kp∆tp/2

E

[
max

0≤n≤N
‖Ŝf1

n − Ŝf2
n ‖p

]
≤ Kp∆tp/2
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Generalisation

Lemma 0.5 The equn for Ŝf1
n over one coarse timestep is

Ŝf1
i,n+1 = Ŝf1

i,n + ai(Ŝ
f1
n )∆t+

∑

j

bij(Ŝ
f1
n )∆Wj,n

+
∑

j,k

cijk(Ŝ
f1
n )
(
∆Wj,n∆Wk,n − Ωjk∆t

)

−
∑

j,k

cijk(Ŝ
f1
n )
(
δWj,nδWk,n+ 1

2

− δWk,nδWj,n+ 1

2

)

+ Mi,n + Ni,n,

where E[Mn | Fn] = 0, and for p≥1 there exists Kp such that

E
[
‖Mn‖p

]
≤ Kp∆t3p/2, E

[
‖Nn‖p

]
≤ Kp∆t2p.
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Generalisation

Lemma 0.6 The equn for Ŝf2
n over one coarse timestep is

Ŝf2
i,n+1 = Ŝf2

i,n + ai(Ŝ
f2
n )∆t+

∑

j

bij(Ŝ
f2
n )∆Wj,n

+
∑

j,k

cijk(Ŝ
f2
n )
(
∆Wj,n∆Wk,n − Ωjk∆t

)

+
∑

j,k

cijk(Ŝ
f2
n )
(
δWj,nδWk,n+ 1

2

− δWk,nδWj,n+ 1

2

)

+ Mi,n + Ni,n,

where E[Mn | Fn] = 0, and for p≥1 there exists Kp such that

E
[
‖Mn‖p

]
≤ Kp∆t3p/2, E

[
‖Nn‖p

]
≤ Kp∆t2p.
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Generalisation

Lemma 0.7 The equn for S
f
n ≡ 1

2(Ŝ
f1
n + Ŝf2

n ) is

S
f
i,n+1 = S

f
i,n + ai(S

f
n)∆t+

∑

j

bij(S
f
n)∆Wj,n

+
∑

j,k

cijk(S
f
n)
(
∆Wj,n∆Wk,n − Ωjk∆t

)

+ Mi,n + Ni,n,

where E[Mn | Fn] = 0, and for p≥1 there exists Kp such that

E
[
‖Mn‖p

]
≤ Kp∆t3p/2, E

[
‖Nn‖p

]
≤ Kp∆t2p.
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Generalisation

Theorem 0.8 For all p ≥ 1, there exists Kp such that

E

[
max

0≤n≤N
‖Sf

n − Ŝc
n‖p
]
≤ Kp∆tp.

Proof

S
f

i,n−Ŝc
i,n =

∑

m<n

(
ai(S

f

i,m)− ai(Ŝ
c
i,m)
)
∆t

+
∑

m<n

∑

j

(
bij(S

f

i,m)− bij(Ŝ
c
i,m)
)
∆Wj,m

+
∑

m<n

∑

j,k

(
cijk(S

f

i,m)−cijk(Ŝ
c
i,m)
)
(∆Wj,n∆Wk,n− Ωjk∆t)

+
∑

m<n

Mi,m +
∑

m<n

Ni,m

�
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Generalisation

Using Burkholder-Davis-Gundy inequality, can prove that

Zn ≡ E

[
max
m<n

‖Sf
m−Ŝc

m‖p
]

satisfies an inequality

Zn ≤ Cp

(
∆tp +

∑

m<n

Zm∆t

)

and desired result then comes from discrete Grönwall
inequality.
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Conclusions

MCQMC10 presentation gave numerical results
showing effectiveness for Heston stochastic volatility
model

also gave an asymptotic analysis explanation

new numerical analysis supports the observations
and previous explanation

further analysis treats case in which we approximate
the Lévy areas by sub-sampling the Brownian path
within each timestep – needed for discontinuous payoffs
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