
An introduction to
GPU programming

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford-Man Institute of Quantitative Finance

Oxford eResearch Centre

Lecture 2 – p. 1/34

Overview

The first lecture covered the basics; now we look at the
extra complexities

warps and conditional warp divergence

memory transfer coalescence

local, constant, shared and texture memory

thread synchronisation

finite difference application

further reading

Lecture 2 – p. 2/34

Warps

Already said that within a block of threads, the threads are
executes in groups of 32 called a warp

if the block size is not divisible by 32, some of the
threads in the last warp don’t do anything

if the block is 2D or 3D, the threads are ordered by first
dimension, then second, then third – then split into
warps of 32

all threads in a warp do the same thing at the same time

different warps are executed independently (except for
explicit synchronisation) by run-time scheduler

it’s possible each warp executes until it needs to wait for
data (from device memory or a previous operation) then
another warp has a turn

Lecture 2 – p. 3/34

Warp divergence

What happens if different threads in a warp need to do
different things?

if (x<0.0)
z = x-2.0;

else
z = sqrt(x);

In a simple case like this, all threads will compute a logical
predicate and two predicated instructions

p = (x<0.0);
if (p) z = x-2.0; // single instruction
if (!p) z = sqrt(x);

Lecture 2 – p. 4/34



Warp divergence

This is called warp divergence

The treatment is almost identical to the logical merge
operation on CRAY vector systems:
z = p ? x-2.0: sqrt(x);

Note also that:

sqrt(x) will produce a NaN when x<0, but this doesn’t
matter as the NaN will not be stored

all threads execute both conditional branches, so
execution cost is sum of both branches

in the worst case, if one thread per warp takes an
expensive branch, then lose a factor 32 in performance

Lecture 2 – p. 5/34

Warp divergence

If the branches are big, nvcc compiler inserts code to
check if all threads in the warp take the same branch
(warp voting) and if so branches accordingly.

In some cases, can determine at compile time this must
happen. e.g. if case is a run-time argument

if (case==1)
z = x*x;

else
z = x+2.3;

Note: doesn’t matter what is happening with other warps
– each warp is treated separately.

Lecture 2 – p. 6/34

Warp divergence

Warp divergence can lead to a big loss of parallel efficiency
– one of the first things I look out for in a new application.

Typical example: PDE application with boundary conditions

if boundary conditions are cheap, loop over all nodes
and branch as needed for boundary conditions

if boundary conditions are expensive, first kernel does
interior points, second kernel does boundary points

Lecture 2 – p. 7/34

Warp divergence

Another example: processing a long list of elements
– depending on run-time values a few require very
expensive processing

GPU implementation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

Note: none of this is rocket science, or new – this is what we
did 20 years ago on CRAY and Thinking Machines systems.

What’s important is to understand hardware behavior and
design your algorithms / implementation accordingly

Lecture 2 – p. 8/34



Bandwidth Issues

Back-of-the-envelope calculation for single precision:

GPU: 1 TFlops

GPU bandwidth: 100 GB/s = 25 Gfloat/s

PCIe bandwidth: 4 GB/s = 1 Gfloat/s

(CPU bandwidth: 25 GB/s = 5 Gfloat/s)

First conclusion: need at least 1000 flops per data access
to get good performance by offloading small pieces of an
application – only good example is dense linear algebra

Usually better to transfer whole application to GPU,
and work on it there to completion

Lecture 2 – p. 9/34

Bandwidth Issues

Second conclusion: even with application data sitting in
GPU device memory, need at least 20 flops per data
access to get good performance, and that assumes max
bandwidth is achieved

Bandwidth on current Tesla GPU:

coalesced: 100 GB/s = 25 Gfloat/s

contiguous, but misaligned: 50 GB/s = 12.5 Gfloat/s

random scatter/gather: 10 GB/s = 2.5 Gfloat/s

Current CUDA codes work hard to achieve coalesced
transfers – probably much less important with the new
Fermi GPU because of L1/L2 caches

Lecture 2 – p. 10/34

Bandwidth Issues

Explanation of terms:

Contiguous access: each element of the warp accesses
a neighbouring array element. e.g. x[tid] where
tid = threadIdx.x + blockIdx.x*blockDim.x

Coalesced access: contiguous access in which first
element is correctly aligned (usually means a multiple
of 16 or 32)

Random access: each thread in the warp accesses
entirely different parts of memory

Lecture 2 – p. 11/34

Bandwidth Issues

What’s going on?

memory transfers are performed in blocks, just like
cache lines in a CPU – this is how high bandwidth is
achieved at hardware level

widely scattered data means lots of blocks have to be
transferred

current hardware discards all data after completing the
operation which needs it – if another operation needs
the same data, it has to be reloaded

in Fermi, it’s kept in the cache, so can re-use same data
and its neighbours without additional transfer

Lecture 2 – p. 12/34



Different variables

Global variables:

held in device (graphics) memory allocated by host

pointer passed into kernel routine

read/write by either host or kernel

exist until de-allocated

Local variables:

private variables for each thread in kernel

scalars usually assigned to registers by compiler

vectors usually stored in device memory
(because registers not addressable)

exist only for lifetime of kernel

Lecture 2 – p. 13/34

Different variables

Constant variables:

global scope within a *.cu CUDA file

defined by a constant prefix

value set by host, read-only by kernels

exist for lifetime of entire application

current GPUs have a 16KB constant cache

very useful to avoid wasting precious registers or
shared memory on essential constants

(Note: literal constants are kept in the code)

Lecture 2 – p. 14/34

Different variables

Shared variables:

defined by a shared prefix in kernel code

(can be sized dynamically but it’s trickier)

limited by 16KB size of shared memory in SM
(going up to 48KB in Fermi)

useful for
re-use of data used by more than one thread
(e.g. finite difference code)
communication/cooperation between threads
(e.g. computing a sum)
addressable private arrays
(so not stored in device memory)

Lecture 2 – p. 15/34

Different variables

Texture variables:

read-only variables stored in device memory, cached
onto GPU

intended for texture mapping in computer graphics, but
also useful for applications like random access lookup
tables

syntax is a bit unusual, confusing

maybe no longer important when Fermi comes out?

for simple example, see Practical 4 in my CUDA course:
http://people.maths.ox.ac.uk/∼gilesm/cuda/

Lecture 2 – p. 16/34



Synchronization

Synchronization can be forced at two levels, within a kernel
or within the main host code.

Within a kernel the instruction

syncthreads();

forces all warps to wait until rest have reached that point

Essential when need to make sure one task
(e.g. reading data into shared memory)

is completed before starting the next

(e.g. using the shared memory values in a computation)

Lecture 2 – p. 17/34

Synchronization

At the host level, important to understand that the kernel
launch is asynchronous – it starts the GPU kernel but the
CPU code is then free to continue doing other things

Need to look at the documentation carefully to see which
CUDA operations are synchronous and asynchronous, and
also which force the completion of earlier CUDA operations

The instruction

cudaThreadSynchronize();

forces completion of all earlier operations – often used
when doing timing

Lecture 2 – p. 18/34

Monte Carlo example

LIBOR market model:

code available on my webpage
people.maths.ox.ac.uk/∼gilesm/libor/
simplest possible “real” example from computational
finance – trivially parallel

involves the calculation of a large number of “paths”;
each is completely independent of the others but uses
its own set of random numbers

host code copies the results back and averages them

Lecture 2 – p. 19/34

Monte Carlo example

single precision results

gcc times are spectacularly slow due to expf function

timings below come from someone who is expert with
both CUDA and Intel’s icc compiler

paths per second
OpenMP on quad-core 3.2GHz Nehalem 0.15 M
OpenMP + SSE vectorisation on same 0.52 M
CUDA on GTX280 4.8 M

Lecture 2 – p. 20/34



Practical 2

Really simple Monte Carlo example:

random number generation using NAG library
(produces numbers on the GPU and stores them in the
graphics memory)

each “path” involves the approximate solution of 2
stochastic differential equations

demonstrates
initialisation and use of constant variables
timing functions
importance of memory coalescence

Lecture 2 – p. 21/34

Finite Difference Application

x x x
x
x
x

Simple model problem: Jacobi iteration to solve
discretisation of Laplace equation

V n+1
i,j = 1

4

(
V n

i+1,j + V n
i−1,j + V n

i,j+1 + V n
i,j−1

)
Lecture 2 – p. 22/34

Finite Difference Application

@@
��

Second idea: take ideas from distributed-memory parallel
computing and partition grid into pieces

Lecture 2 – p. 23/34

Finite Difference Application

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

Lecture 2 – p. 24/34



Finite Difference Application

ss
ss
ss
ss

ss
ss
ss
ss

s s s s s s s s

s s s s s s s s

Each block of threads processes one of these grid blocks,
reading in old values and computing new values

Lecture 2 – p. 25/34

Finite Difference Application

How should this be programmed?

First idea: each thread does one grid point, reading in
directly from graphics memory the old values at the 4
neighbours (6 in 3D)

Performance is poor on current hardware:

each old value read in 4 times (6 in 3D) and 2 of these
suffer a factor 2× penalty due to misalignment

including coalesced writing of new value, leads to factor
3.5 (4.5 in 3D) increase in bandwidth compared to ideal

however this version will probably be very efficient on
new Fermi GPU because of its L1/L2 caches

Lecture 2 – p. 26/34

Finite Difference Application

Second idea: load old data into shared memory:

each thread loads in the data for its grid point
(coalesced) and maybe one halo point (only partially
coalesced)

need a syncthreads(); instruction to ensure all
threads have completed this before any of them access
the data

each thread computed its new value and writes it to
graphics memory

not possible to get full coalescence due to halo
boundary data – probably increases bandwidth by
factor 1.5 compared to ideal

Lecture 2 – p. 27/34

Finite Difference Application

2D finite difference implementation:

good news: 30× speedup relative to Xeon single core,
and 7× speedup relative to 2 quad-core Xeons using
OpenMP

bad news: grid size has to be 10242 to have enough
parallel work to do to get this performance

unlikely to have real applications of this size;
an alternative is to perform multiple 2D calculations at
the same time, perhaps with different parameter values

Lecture 2 – p. 28/34



Finite Difference Application

3D finite difference implementation:

insufficient shared memory for whole 3D block, so hold
3 working planes at a time

key steps in kernel code:
load in k=0 z-plane (inc x and y-halos)
loop over all z-planes

load k+1 z-plane
process k z-plane
store new k z-plane

50× speedup relative to Xeon single core, and
10× speedup relative to 2 quad-core Xeons

Lecture 2 – p. 29/34

Practical 3

has both “naive” and efficient implementations for finite
difference application described above

has “gold” CPU version to check results are correct
– this follow the approach used by the CUDA SDK
examples and is good programming practice

also demonstrates use of timing functions

Lecture 2 – p. 30/34

Checklist

What I think about for a new application:

lots of inherent parallelism?

viable to offload small compute-intensive bits?

any potential problems with warp divergence?

very compute-intensive, or need to be careful to
minimise bandwidth requirements?

tricky bits (e.g. reduction, scan)?

use shared memory to improve data re-use?

(on Fermi, use shared memory or rely on cache?)

how to minimise registers per thread?

is there a relevant example in CUDA SDK?
or forums? or gpucomputing.net?

Lecture 2 – p. 31/34

Further reading

new book by David Kirk and Wen-Mei Hwu:
www.elsevierdirect.com/morgan kaufmann/kirk/

UIUC course by Wen-Mei Hwu and others:
courses.ece.illinois.edu/ece498/al/Syllabus.html

my course:
people.maths.ox.ac.uk/∼gilesm/cuda/
CUDA SDK examples:
www.nvidia.com/object/cuda sdks.html

CUDA Programming Guide and Best Practice Guide:
www.nvidia.com/object/cuda develop.html

Lecture 2 – p. 32/34



Further reading

Most important things I’ve not mentioned:

CUBLAS, CUFFT and CUDPP libraries
– see documentation in Toolkit

how to implement parallel reduction and scan
– see SDK examples reduction and scan

coping with a maximum of 64 registers per thread

code optimization tricks – see SDK examples and
CUDA C Programming Best Practices Guide

Lecture 2 – p. 33/34

Final Words

I think GPU computing will be big for next 5–10 years

right now NVIDIA is well in the lead, but AMD might get
back in the game with OpenCL

I think Intel will respond through increasing AVX vector
unit size alongside “standard” CPUs

within 10 years, we will have GPUs with 20k cores and
1M threads!

will the interconnect (e.g. Infiniband) become the
bottleneck in big clusters?

Good luck – have fun!

Lecture 2 – p. 34/34


