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PDEs with Uncertainty

Looking at the history of numerical methods for PDEs, the first steps
were about improving the modelling:

1D → 2D → 3D

steady → unsteady

laminar flow → turbulence modelling → large eddy simulation
→ direct Navier-Stokes

simple geometries (e.g. a wing) → complex geometries
(e.g. an aircraft in landing configuration)

adding new features such as combustion, coupling to structural /
thermal analyses, etc.

. . . and then engineering switched from analysis to design.
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PDEs with Uncertainty

The big move now is towards handling uncertainty:

uncertainty in modelling parameters

uncertainty in geometry

uncertainty in initial conditions

uncertainty in spatially-varying material properties

inclusion of stochastic source terms

Engineering wants to move to “robust design” taking into account the
effects of uncertainty.

Other areas want to move into Bayesian inference, starting with an a priori

distribution for the uncertainty, and then using data to derive an improved
a posteriori distribution.
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PDEs with Uncertainty

Examples:

Long-term climate modelling:

Lots of sources of uncertainty including the effects of aerosols,
clouds, carbon cycle, ocean circulation
(http://climate.nasa.gov/uncertainties)

Short-range weather prediction

Considerable uncertainty in the initial data due to limited
measurements
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PDEs with Uncertainty

Engineering analysis

Perhaps the biggest uncertainty is geometric due to manufacturing
tolerances

Nuclear waste repository and oil reservoir modelling

Considerable uncertainty about porosity of rock

Astronomy

“Random” spatial/temporal variations in air density disturb
correlation in signals received by different antennas

Finance

Stochastic forcing due to market behaviour
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PDEs with Uncertainty

In the past, Monte Carlo simulation has been viewed as impractical due to
its expense, and so people have used other methods:

stochastic collocation

polynomial chaos

Because of Multilevel Monte Carlo, this is changing and there are now
several research groups using MLMC for PDE applications

The approach is very simple, in principle:

use a sequence of grids of increasing resolution in space (and time)

as with SDEs, determine the optimal allocation of computational
effort on the different levels

the savings can be much greater because the cost goes up more
rapidly with level
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Generalised MLMC Theorem

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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Generalised MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2
]
< ε2

with a computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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Parabolic SPDE

Unusual parabolic SPDE arises in a financial setting
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ
∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x , t) is probability density function

stochastic dW term corresponds to systemic risk
(a market crash or recession hits all firms)

∂2p/∂x2 comes from idiosyncratic risk
(each firm is affected by its own unique circumstances)
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Parabolic SPDE

Numerical discretisation combines Milstein time-marching with central
difference spatial approximation:

vn+1
j = vnj − µ k +

√
ρ∆Wn

2h

(
vnj+1 − vnj−1

)

+
(1−ρ) k + ρ∆W 2

n

2h2
(
vnj+1 − 2vnj + vnj−1

)

where k is the timestep, h is the grid spacing, and ∆Wn ∼ N(0, k).

Each finer level uses four times as many timesteps, and twice as many
spatial points, due to numerical stability constraints.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 11 / 41



Parabolic SPDE

coarsest level of approximation uses 1 timestep per quarter,
and 10 spatial points

implementation is really very easy – most interesting part of research
was mean-square stability theory, with and without absorbing
boundary

computational cost Cℓ ∝ 8ℓ

numerical results suggest variance Vℓ ∝ 8−ℓ

can prove Vℓ ∝ 16−ℓ when no absorbing boundary
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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PDEs with Uncertainty

I’m working with Rob Scheichl (Bath) and Andrew Cliffe (Nottingham)
on multilevel Monte Carlo for the modelling of oil reservoirs and
groundwater contamination in nuclear waste repositories.

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain, and log κ(x) is often modelled as
being Normally distributed with a spatial covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)
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Elliptic SPDE

A typical realisation of κ for λ = 0.001, σ = 1.
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the correlation function:

∫
R(x, y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.

(Latest 2D/3D work uses an efficient FFT construction based on a
circulant embedding.)
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Elliptic SPDE

Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos approach, but
it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform grid – for rough
coefficients we need to make grid spacing very small on finest grid

each level of refinement has twice as many grid points in each
direction

current numerical experiments use a direct solver for simplicity,
but in 3D will use an efficient AMG multigrid solver with a cost
roughly proportional to the total number of grid points

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 19 / 41



2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost taken to be proportional to number of nodes
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2D Results
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V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ h2ℓ
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2D Results
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Complexity analysis

Relating things back to the MLMC theorem:

E[P̂ℓ−P ] ∼ 2−2ℓ =⇒ α = 2

Vℓ ∼ 2−2ℓ =⇒ β = 2

Cℓ ∼ 2dℓ =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing h ∼ ε1/2

and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 23 / 41



Other SPDE applications

For more on multilevel for SPDEs, see the work of Christoph Schwab and
his group (ETH Zurich):

http://www.math.ethz.ch/∼schwab/

elliptic, parabolic and hyperbolic PDEs

stochastic coefficients, initial data, boundary data

Schwab used to work on alternative techniques such as “polynomial chaos”
but has now switched to multilevel because of its superior efficiency for
many applications.

For other papers on multilevel, see my MLMC community homepage:

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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Details of MATLAB MLMC code

In Practical 2 you will be working with a set of MATLAB codes which
implement the multilevel Monte Carlo method for 4 applications:

financial option based on Geometric Brownian Motion SDE

1D elliptic PDE with uncertain forcing / boundary conditions

1D parabolic PDE with uncertain forcing / initial data / b.c.’s

1D nonlinear hyperbolic PDE with uncertain initial data / b.c.’s

These all use

mlmc.m: “driver” code which performs the MLMC calculation using
a user routine to estimate E[Pℓ − Pℓ−1] using Nℓ samples

mlmc test.m: a program which does a lot of tests and then calls
mlmc.m to perform a number of MLMC calculations
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Details of MATLAB MLMC code

mlmc test.m first performs a set of calculations using a fixed number of
samples on each level of resolution, and produces 4 plots:

log2(Vℓ) versus level ℓ

log2(|E[Pℓ − Pℓ−1]|) versus level ℓ
consistency check versus level

kurtosis versus level
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Details of MATLAB MLMC code

If a, b, c are estimates for E[Pℓ−1], E[Pℓ], E[Pℓ − Pℓ−1], respectively,
then it should be true that a − b + c ≈ 0

The consistency check verifies that this is true, to within the accuracy one
would expect due to sampling error.

Since √
V[a − b + c] ≤

√
V[a] +

√
V[b] +

√
V[c]

it computes the ratio

|a − b + c |
3(
√

V[a] +
√

V[b] +
√

V[c])

The probability of this ratio being greater than 1 based on random
sampling errors is extremely small. If it is, it indicates a likely error.
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Details of MATLAB MLMC code

The MLMC approach needs a good estimate for Vℓ = V[Pℓ − Pℓ−1], but
how many samples are need for this?

As few as 10 may be sufficient in many cases for a rough estimate, but
many more are needed when there are rare outliers.

When the number of samples N is large, the standard deviation of the
sample variance for a random variable X with zero mean is approximately

√
κ− 1

N
E[X 2] where kurtosis κ is defined as κ =

E[X 4]

(E[X 2])2

(see http://mathworld.wolfram.com/SampleVarianceDistribution.html)

As well as plotting κℓ, mlmc test.m will give a warning if κℓ is very large.
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Details of MATLAB MLMC code

An extreme (but important) example is a digital option in which P

always takes the value 0 or 1.

In this case we have

X ≡ Pℓ − Pℓ−1 =





1, probability p

−1, probability q

0, probability 1−p−q

If p, q ≪ 1, then E[X ] ≈ 0, and

κ ≈ p + q

(p + q)2
= (p + q)−1 ≫ 1

Therefore, many samples are required for a good estimate of Vℓ,
and if we don’t have many samples, we may get all X (n) = 0,
which will give an estimated variance of zero.
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Details of MATLAB MLMC code

% function [P, Nl] = mlmc(N0,eps,mlmc_l, alpha,beta,gamma)

%

% P = value

% Nl = number of samples at each level

% N0 = initial number of samples on levels 0,1,2

% eps = desired accuracy (rms error)

% alpha -> weak error is O(2^{-alpha*l})

% beta -> variance is O(2^{-beta*l})

% gamma -> sample cost is O(2^{gamma*l})

%

% if alpha, beta are not positive then they will be estimated

%

% mlmc_l = function for level l estimator

%

% sums = mlmc_fn(l,N) low-level routine

% inputs: l = level

% N = number of paths

% output: sums(1) = sum(Y)

% sums(2) = sum(Y.^2)

% where Y are iid samples with expected value:

% E[P_0] on level 0

% E[P_l - P_{l-1}] on level l>0
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Details of MATLAB MLMC code

function [P, Nl] = mlmc(N0,eps,mlmc_l, alpha_0,beta_0,gamma)

alpha = max(0, alpha_0);

beta = max(0, beta_0);

L = 2;

Nl(1:3) = 0;

suml(1:2,1:3) = 0;

dNl(1:3) = N0;

while sum(dNl) > 0

%

% update sample sums

%

for l=0:L

if dNl(l+1) > 0

sums = feval(mlmc_l,l,dNl(l+1));

Nl(l+1) = Nl(l+1) + dNl(l+1);

suml(1,l+1) = suml(1,l+1) + sums(1);

suml(2,l+1) = suml(2,l+1) + sums(2);

end

end
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Details of MATLAB MLMC code

%

% compute absolute average and variance

%

ml = abs( suml(1,:)./Nl);

Vl = max(0, suml(2,:)./Nl - ml.^2);

%

% fix to cope with possible zero values for ml and Vl

% (can happen in some applications when there are few samples)

%

for l = 3:L+1

ml(l) = max(ml(l), 0.5*ml(l-1)/2^alpha);

Vl(l) = max(Vl(l), 0.5*Vl(l-1)/2^beta);

end
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Details of MATLAB MLMC code

%

% use linear regression to estimate alpha, beta if not given

%

if alpha_0 <= 0

A = repmat((1:L)’,1,2).^repmat(1:-1:0,L,1);

x = A \ log2(ml(2:end))’;

alpha = max(0.5,-x(1));

end

if beta_0 <= 0

A = repmat((1:L)’,1,2).^repmat(1:-1:0,L,1);

x = A \ log2(Vl(2:end))’;

beta = max(0.5,-x(1));

end
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Details of MATLAB MLMC code

%

% set optimal number of additional samples

%

Cl = 2.^(gamma*(0:L));

Ns = ceil(2 * sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) / eps^2);

dNl = max(0, Ns-Nl);

%

Here Cℓ is the cost per sample. The optimal number of samples

Nℓ is chosen to minimise
∑

ℓ

NℓCℓ subject to
∑

ℓ

N−1
ℓ Vℓ ≈ 1

2ε
2.

Using a Lagrange multiplier gives Nℓ = λ
√

Vℓ/Cℓ where

λ−1
∑

ℓ

√
Vℓ Cℓ =

1
2ε

2.
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Details of MATLAB MLMC code

% if (almost) converged, estimate remaining error and decide

% whether a new level is required

%

if sum( dNl > 0.01*Nl ) == 0

range = -2:0;

rem = max(ml(L+1+range).*2.^(alpha*range)) / (2^alpha - 1);

if rem > eps/sqrt(2)

L = L+1;

Vl(L+1) = Vl(L) / 2^beta;

Nl(L+1) = 0;

suml(1:4,L+1) = 0;

Cl = 2.^(gamma*(0:L));

Ns = ceil(2 * sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) / eps^2);

dNl = max(0, Ns-Nl);

end

end

end

%

% finally, evaluate multilevel estimator

%

P = sum(suml(1,:)./Nl);
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Details of MATLAB MLMC code

If E[Pℓ−Pℓ−1] ∝ 2−αℓ then the remaining error is

E[P−PL] =

∞∑

ℓ=L+1

E[Pℓ − Pℓ−1] ≈ E[PL−PL−1]

∞∑

k=1

2−αk

= E[PL−PL−1] / (2α − 1)

We want |E[P−PL]| < ε/
√
2 (remember the two contributions

to the Mean Square Error), so that gives the convergence test

|E[PL−PL−1]| / (2α − 1) < ε/
√
2

For robustness, we extend this check to extrapolate from the previous two
data points E[PL−1−PL−2], E[PL−2−PL−3], and take the maximum over
all three as the estimated remaining error.
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Extension to multiple outputs

The analysis so far has considered a single output quantity

What do we do if we want more than one?

The main approach stays exactly the same – the main change is in
how we choose the number of samples on each level of approximation
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Extension to multiple outputs
Suppose we have M outputs and want

L∑

ℓ=0

N−1
ℓ Vℓ,m ≤ 1

2 ε
2
m, m = 1, . . . ,M,

where Vℓ,m is the variance of the multilevel correction for output m, and
εm is the desired RMS accuracy for that output.

As usual the computational cost is

L∑

ℓ=0

Nℓ Cℓ,

and we can then do a constrained optimisation using M Lagrange
multipliers.

However, this is a bit nasty – it’s not clear how many of the Lagrange
multipliers will be “active”
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Extension to multiple outputs

A simpler approach is to define

Vℓ = max
m

Vℓ,m

ε2m

and make the variance constraint

L∑

ℓ=0

N−1
ℓ Vℓ ≤ 1

2 .

This brings it back to a problem with a single Lagrange multiplier
with the same optimal solution as before.

Klaus Ritter and Tigran Nagapetyan (Kaiserslautern) are using this
to estimate the CDF (cumulative distribution function) of an exit
time τ . We estimate the CDF at a set of exit times τk , and then
use a cubic spline to approximate the full CDF.
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels
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Non-geometric multilevel
At MIT, Nyugen is starting to look at an application based on reduced
order modelling in which a solution can be expressed as a sum over a
number of modes:

u =

M∑

m=1

am um

Here the um are fixed, and the amplitudes am are calculated by solving a
reduced order problem which depends on some stochastic inputs.

Increasing M increases the accuracy, but also increases the cost.

MLMC may be very effective, but it’s not at all clear how to choose the
levels. Geometric might be OK:

Mℓ = {1, 2, 4, 8, 16}
but perhaps linear would be better?

Mℓ = {2, 4, 6, 8, 10, 12}
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