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SDEs in Finance

In computational finance, stochastic differential equations are used
to model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .
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SDEs in Finance

Stochastic differential equations are just ordinary differential equations
plus an additional random source term.

The stochastic term accounts for the uncertainty of unpredictable
day-to-day events.

The aim is not to predict exactly what will happen in the future, but
to predict the probability of a range of possible things that might happen,
and compute some averages, or the probability of an excessive loss.

This is really just uncertainty quantification, and they’ve been doing it
for quite a while because they have so much uncertainty.
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SDEs in Finance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250
multiple Geometric Brownian Motion paths

years

as
se

t v
al

ue

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 5 / 33



SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for stock prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r)dt + σ
√
r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +
√
V S dW1

dV = λ (σ2−V )dt + ξ
√
V dW2

with correlation ρ between dW1 and dW2
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Generic Problem

Stochastic differential equation with general drift and volatility terms:

dS(t) = a(S , t)dt + b(S , t)dW (t)

W (t) is a Wiener variable with the properties that for any q< r<s< t,
W (t)−W (s) is Normally distributed with mean 0 and variance t−s,
independent of W (r)−W (q).

In many finance applications, we want to compute the expected value of
an option dependent on the terminal state P(S(T ))

Other options depend on the average, minimum or maximum over the
whole time interval.
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Euler discretisation

Given the generic SDE:

dS(t) = a(S) dt + b(S) dW (t), 0< t<T ,

the Euler discretisation with timestep h is:

Ŝn+1 = Ŝn + a(Ŝn) h + b(Ŝn)∆Wn

where ∆Wn are Normal with mean 0, variance h.

How good is this approximation?

How do the errors behave as h → 0?

These are much harder questions when working with SDEs instead of
ODEs.
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Weak convergence

For most finance applications, what matters is the weak order of
convergence, defined by the error in the expected value of the payoff.

For a European option, the weak order is m if

E [f (S(T ))] − E

[
f (ŜN)

]
= O(hm)

The Euler scheme has order 1 weak convergence, so the discretisation
“bias” is asymptotically proportional to h.
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Strong convergence

In some Monte Carlo applications, what matters is the strong order of
convergence, defined by the average error in approximating each individual
path.

For the generic SDE, the strong order is m if

E

[ ∣∣∣S(T )− ŜN

∣∣∣
]
= O(hm)

The Euler scheme has order 1/2 strong convergence.

The leading order errors are as likely to be positive as negative, and so
cancel out – this is why the weak order is higher.
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Exotic options

Lookback option: P =

(
S(T )− min

0<t<T

S(t)

)

Approximation Ŝmin = minn Ŝn gives O(h1/2) weak convergence

Barrier option (down-and-out call):
P = 1( min

0<t<T

S(t) > B) max(0,S(T )−K )

Approximation using Ŝmin gives O(h1/2) weak convergence

Asian option: P = max

(
0, T−1

∫
T

0
S(t) dt − K

)

Trapezodial integration gives O(h) weak convergence
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Exotic options

The poor weak convergence for the lookback and barrier options is due to
the fact that there is an O(h1/2) change in O(S(t)) within each timestep.

It is possible to approximate this (using something called a Brownian
Bridge construction) and recover first order weak convergence.

Key point: getting high order convergence is very difficult.
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Mean Square Error

Finally, how to decide whether it is better to increase the number of
timesteps (reducing the weak error) or the number of paths (reducing the
Monte Carlo sampling error)?

If the true option value is V = E[f ]

and the discrete approximation is V̂ = E[f̂ ]

and the Monte Carlo estimate is Ŷ =
1

N

N∑

n=1

f̂ (n)

then . . .
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Mean Square Error

. . . the Mean Square Error is

E

[(
Ŷ − V

)2
]

= E

[(
Ŷ −E[f̂ ] + E[f̂ ]−E[f ]

)2
]

= E

[
(Ŷ −E[f̂ ])2

]
+ (E[f̂ ]−E[f ])2

= N−1
V[f̂ ] +

(
E[f̂ ]−E[f ]

)2

first term is due to the variance of estimator

second term is square of bias due to weak error
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Mean Square Error

Given first order weak convergence and M timesteps, the computational
cost is proportional to C = NM and the MSE is approximately

a N−1 + bM−2 = a N−1 + b C−2N2.

For a fixed computational cost, this is a minimum when

N =

(
a C 2

2 b

)1/3

, M =

(
2 b C

a

)1/3

,

and the two error terms have a similar magnitude.

Hence the cost to achieve a RMS error of ε requires M = O(ε−1)
and N = O(ε−2), so the total cost is O(ε−3).
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Multilevel Monte Carlo

When solving finite difference equations coming from approximating PDEs,
multigrid combines calculations on a nested sequence of grids to get the
accuracy of the finest grid at a much lower computational cost.

Multilevel Monte Carlo uses a similar idea to achieve variance reduction in
Monte Carlo path calculations, combining simulations with different
numbers of timesteps – same accuracy as finest calculations, but at a
much lower computational cost.

Can also be viewed as a recursive control variate strategy.
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Multilevel MC Approach

Consider multiple sets of simulations with different timesteps
hℓ = 2−ℓ T , ℓ = 0, 1, . . . , L, and payoff P̂ℓ

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

Expected value is same – aim is to reduce variance of estimator for a fixed
computational cost.

Key point: approximate E[P̂ℓ−P̂ℓ−1] using Nℓ simulations with P̂ℓ and
P̂ℓ−1 obtained using same Brownian path.

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂
(i)
ℓ −P̂

(i)
ℓ−1

)
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Multilevel MC Approach
Discrete Brownian path at different levels
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Multilevel MC Approach

Using independent paths for each level, the variance of the combined
estimator is

V

[
L∑

ℓ=0

Ŷℓ

]
=

L∑

ℓ=0

N−1
ℓ Vℓ, Vℓ ≡ V[P̂ℓ−P̂ℓ−1],

and the computational cost is proportional to

L∑

ℓ=0

Nℓ h
−1
ℓ .

Hence, the variance is minimised for a fixed computational cost by
choosing Nℓ to be proportional to

√
Vℓ hℓ.

The constant of proportionality can be chosen so that the combined
variance is O(ε2).
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Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V[P̂ℓ−P ] = O(hℓ) =⇒ V[P̂ℓ−P̂ℓ−1] = O(hℓ)

and the optimal Nℓ is asymptotically proportional to hℓ.

To make the combined variance O(ε2) requires

Nℓ = O(ε−2L hℓ).

To make the bias O(ε) requires

L = log2 ε
−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost which is
O(ε−2L2) = O(ε−2(log ε)2).
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and

P̂l the discrete approximation using a timestep hℓ = M−ℓ T.

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂ℓ − P ]

∣∣∣ ≤ c1 h
α
ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ − P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ h

β
ℓ

iv) Cℓ, the computational complexity of Ŷℓ, is bounded by

Cℓ ≤ c3 Nℓ h
−1
ℓ
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there are

values L and Nℓ for which the multi-level estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]
< ε2

with a computational complexity C with bound

C ≤





c4 ε
−2, β > 1,

c4 ε
−2(log ε)2, β = 1,

c4 ε
−2−(1−β)/α, 0 < β < 1.
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Convergence Test

Asymptotically,
E[P̂L−P̂L−1] ≈ (M−1)E[P−P̂L]

so this can be used to decide when the bias error is sufficiently small.

In case the correction changes sign at some level, it is safer to use the
convergence test

max
{
M−1

∣∣∣ŶL−1

∣∣∣ ,
∣∣∣ŶL

∣∣∣
}
< (M−1)

ε
√
2
.
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Multilevel Algorithm

1 start with L=0

2 estimate VL using an initial NL=104 samples

3 define optimal Nℓ, ℓ = 0, . . . , L

4 evaluate extra samples as needed for new Nℓ

5 if L≥2, test for convergence

6 if L<2 or not converged, set L := L+1 and go to 2.

Numerical results use M=4, which is almost twice as efficient as M=2.
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW , 0 < t < 1,

S(0)=1, r=0.05, σ=0.2

Heston model:

dS = r S dt +
√
V S dW1, 0 < t < 1

dV = λ (σ2−V )dt + ξ
√
V dW2,

S(0)=1, V (0)=0.04, r=0.05, σ=0.2, λ=5, ξ=0.25, ρ=−0.5

All calculations use M=4, more efficient than M=2.
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Results

GBM: European call, max(S(1)−1, 0)
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Results

GBM: European call, max(S(1)−1, 0)
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Results

GBM: lookback option, S(1)−min0<t<1 S(t)
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Results

GBM: lookback option, S(1)−min0<t<1 S(t)

0 2 4 6
10

2

10
4

10
6

10
8

10
10

l

N
l

 

 
ε=0.00005
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001

10
−4

10
−3

10
−1

10
0

10
1

10
2

ε

ε2  C
os

t

 

 

Std MC
MLMC

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 29 / 33



Results

Heston model: European call
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Results

Heston model: European call
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Extensions

Milstein discretisation gives better strong convergence, and hence
better multilevel performance

Quasi-Monte Carlo – very effective on coarse grids and reduces overall
cost to roughly O(ε−1.5) in simplest cases

multivariate discontinuous payoffs – simplest approach is to use
“splitting” for multiple simulations of final timestep

jump-diffusion and Lévy processes (more realistic models than
Brownian diffusion)
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