
Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

KU Leuven Summer School on Uncertainty Quantification

May 30–31, 2013

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 1 / 37

Lecture outline

Lecture 2: Variance reduction

importance sampling

stratified sampling

Latin Hypercube

randomised quasi-Monte Carlo

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 2 / 37

Importance Sampling

Importance sampling involves a change of probability measure.

Instead of taking X from a distribution with p.d.f. p1(X), we instead take
it from a different distribution with p.d.f. p2(X).

E1[f (X)] =

∫
f (X) p1(X) dX

=

∫
f (X)

p1(X)

p2(X)
p2(X) dX

= E2[f (X) R(X)]

where R(X) = p1(X)/p2(X) is the Radon-Nikodym derivative.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 3 / 37

Importance Sampling

We want the new variance V2[f (X) R(X)] to be smaller than the old
variance V1[f (X)].

How do we achieve this? Ideal is to make f (X)R(X) constant, so its
variance is zero.

More practically, make R(X) small where f (X) is large, and make R(X)
large where f (X) is small.

Small R(X) ⇐⇒ large p2(X) relative to p1(X), so more random samples
in region where f (X) is large.

Particularly important for rare event simulation where f (X) is zero almost
everywhere.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 4 / 37

Importance Sampling

Simple example: want to estimate E[X 8] when X is a N(0, 1) Normal
random variable.

Here

p1(x) = φ(x) ≡ 1√
2π

exp(−1
2 x

2)

but what should we choose for p2(x)?

Want more samples in extreme “tails”, so instead take samples from a
N(0, σ2) distribution with σ>1:

p2(x) =
1√
2π σ

exp(−1
2 x

2/σ2)

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 5 / 37

Importance Sampling

The Radon-Nikodym derivative is

R(X) = exp

(
− x2

2

)
/

1

σ2
exp

(
− x2

2σ2
2

)

= σ2 exp

(
− x2(σ2

2−1)

2σ2
2

)

> 1 for small |x |
≪ 1 for large |x |

This is good for applications where both tails are important. If only one
is important then it might be better to shift the mean towards that end.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 6 / 37

Importance Sampling

Note that

V2[f (X) R(X)] = E2[f (X)2 R(X)2]− (E2[f (X) R(X)])2

= E1[f (X)2R(X)]− (E1[f (X)])2

so to minimise the variance we can try to minimise E1[f (X)2R(X)].

If the new distribution is defined parametrically (e.g. a Normal distribution
N(µ, σ2) with mean µ and variance σ2) then we have an optimisation
problem:

Find µ, σ to minimise E1[f (X)2R(X)]

Can use a few samples to estimate E1[f (X)2R(X)] and do the
optimisation, then use those values of µ, σ to construct the real
estimate for E2[f (X) R(X)].

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 7 / 37

Stratified Sampling

The key idea is to achieve a more regular sampling of the most
“important” dimension in the uncertainty.

Start by considering a one-dimensional problem:

I =

∫ 1

0
f (U)dU.

Instead of taking N samples, drawn from uniform distribution on [0, 1],
instead break the interval into M strata of equal width and take L samples
from each.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 8 / 37

Stratified Sampling

Define Uij to be the value of i th sample from strata j ,

F j = L−1
∑

i

f (Uij) = average from strata j ,

F = M−1
∑

j

F j = overall average

and similarly let

µj = E[f (U) |U ∈ strata j],

σ2
j = V[f (U) |U ∈ strata j],

µ = E[f],
σ2 = V[f].

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 9 / 37

Stratified Sampling

With stratified sampling,

E[F] = M−1
∑

j

E[F j] = M−1
∑

j

µj = µ

so it is unbiased.

The variance is

V[F] = M−2
∑

j

V[F j] = M−2L−1
∑

j

σ2
j

= N−1M−1
∑

j

σ2
j

where N = LM is the total number of samples.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 10 / 37

Stratified Sampling

Without stratified sampling, V[F] = N−1σ2 with

σ2 = E[f 2]− µ2

= M−1
∑

j

E[f (U)2 |U ∈ strata j] − µ2

= M−1
∑

j

(µ2
j + σ2

j) − µ2

= M−1
∑

j

(
(µj−µ)2 + σ2

j

)

≥ M−1
∑

j

σ2
j

Thus stratified sampling reduces the variance.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 11 / 37

Stratified Sampling

How do we use this for MC simulations?

For a one-dimensional application:

Break [0, 1] into M strata

For each stratum, take L samples U with uniform probability
distribution

Compute average within each stratum, and overall average.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 12 / 37

Stratified Sampling

Test case: European call
r=0.05, σ=0.5, T =1, S0=110, K=100, N=104 samples

M L MC error bound

1 10000 1.39

10 1000 0.55

100 100 0.21

1000 10 0.07

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 13 / 37

Application

MATLAB code:

for M = [1 10 100 1000]

L = N/M; ave=0; var=0;

for m = 1:M

U = (m-1+rand(1,L))/M;

Y = ncfinv(U);

S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

ave1 = sum(F)/L;

var1 = (sum(F.^2)/L - ave1^2)/(L-1);

ave = ave + ave1/M;

var = var + var1/M^2;

end

end

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 14 / 37

Stratified Sampling

Sub-dividing a stratum always reduces the variance, so the optimum
choice is to use 1 sample per stratum

However, need multiple samples in each stratum to estimate the variance
and obtain a confidence interval.

This tradeoff between efficiency and confidence/reliability happens also
with quasi-Monte Carlo sampling

Despite this, worth noting that when using just 1 sample per stratum, the
variance of the overall estimator is O(N−3), much better than the usual
O(N−1).

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 15 / 37

Stratified Sampling

For a multivariate application, one approach is to:

Break [0, 1] into M strata

For each stratum, take L samples U with uniform probability
distribution

Define X1 = Φ−1(U)

Simulate other elements of X using standard Normal random number
generation

Multiply X by matrix C to get Y = C X with desired covariance

Compute average within each stratum, and overall average

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 16 / 37

Stratified Sampling

The effectiveness of this depends on a good choice of C .

Ideally, want the function f (Y) to depend solely on the value of X1 so it
reduces to a one-dimensional application.

Not easy in practice, requires good insight or a complex optimisation, so
instead generalise stratified sampling approach to multiple dimensions.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 17 / 37

Stratified Sampling

For a d -dimensional application, can split each dimension of the [0, 1]d

hypercube into M strata producing Md sub-cubes.

One generalisation of stratified sampling is to generate L points in each of
these hypercubes

However, the total number of points is LMd which for large d would force
M to be very small in practice.

Instead, use a method called Latin Hypercube sampling

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 18 / 37

Latin Hypercube

Generate M points, dimension-by-dimension, using 1D stratified sampling
with 1 value per stratum, assigning them randomly to the M points to
give precisely one point in each stratum

✉
✉

✉

✉
Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 19 / 37

Latin Hypercube

This gives one set of M points, with average

f = M−1
M∑

m=1

f (Um)

Since each of the points Um is uniformly distributed over the hypercube,

E[f] = E[f]

The fact that the points are not independently generated does not affect
the expectation, only the (reduced) variance

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 20 / 37

Latin Hypercube

We now take L independently-generated set of points, each giving an
average f l .

Averaging these

L−1
L∑

l=1

f l

gives an unbiased estimate for E[f], and the empirical variance for f l gives
a confidence interval in the usual way.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 21 / 37

Latin Hypercube

Note: in the special case in which the function f (U) is a sum of
one-dimensional functions:

f (U) =
∑

i

fi(Ui)

where Ui is the i th component of U, then Latin Hypercube sampling
reduces to 1D stratified sampling in each dimension.

In this case, potential for very large variance reduction by using large
sample size M.

Much harder to analyse in general case.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 22 / 37

Quasi Monte Carlo

Standard Monte Carlo approximates high-dimensional hypercube integral

∫

[0,1]d
f (x) dx

by

1

N

N∑

i=1

f (x(i))

with points chosen randomly, giving

r.m.s. error proportional to N−1/2

confidence interval

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 23 / 37

Quasi Monte Carlo

Standard quasi Monte Carlo uses the same equal-weight estimator

1

N

N∑

i=1

f (x(i))

but chooses the points systematically so that

error roughly proportional to N−1

no confidence interval

(We’ll get the confidence interval back later by adding in some
randomisation!)

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 24 / 37

Quasi-Monte Carlo

The key is to use points which are fairly uniformly spread within the
hypercube, not clustered anywhere.

There is theory to prove that for certain point constructions, and certain
function classes,

Error < C
(logN)d

N

for small dimension d , (d<10?) this is much better than N−1/2

r.m.s. error for standard MC

for large dimension d , (logN)d could be enormous,
so not clear there is any benefit

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 25 / 37

Rank-1 Lattice Rule

A rank-1 lattice rule has the simple construction

x(i) =
i

N
z mod 1

where z is a special d -dimensional “generating vector” with integer
components co-prime with N (i.e. GCF is 1) and r mod 1 means
dropping the integer part of r

In each dimension k , the values x
(i)
k are a permutation of the equally

spaced points 0, 1/N, 2/N . . . (N−1)/N which is great for integrands f
which vary only in one dimension.

Also very good if f (x) =
∑

k

fk(xk).

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 26 / 37

Rank-1 Lattice Rule

Two dimensions: 256 points

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

rank−1 lattice

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

random points

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 27 / 37

Sobol Sequences

Sobol sequences x(i) have the property that for small dimensions d<40
the subsequence 2m ≤ i < 2m+1 has precisely 2m−d points in each
sub-unit formed by d bisections of the original hypercube.

For example:

cutting it into halves in any dimension, each has 2m−1 points

cutting it into quarters in any dimension, each has 2m−2 points

cutting it into halves in one direction, then halves in another
direction, each quarter has 2m−2 points

etc.

The generation of these sequences is a bit complicated, but it is fast
and plenty of software is available to do it. MATLAB has sobolset
as part of the Statistics toolbox.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 28 / 37

Randomised QMC

In the best cases, QMC error is O(N−1) instead of O(N−1/2) but without
a confidence interval.

To get a confidence interval using a rank-1 lattice rule, we use several
sets of QMC points, with the N points in set m defined by

x(i ,m) =

(
i

N
z + X (m)

)
mod 1

where X (m) is a random offset vector, uniformly distributed in [0, 1]d

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 29 / 37

Randomised QMC

For each m, let

f m =
1

N

N∑

i=1

f (x(i ,m))

This is a random variable, and since E[f (x(i ,m))] = E[f] it follows that
E[f m] = E[f]

By using multiple sets, we can estimate V[f] in the usual way and so
get a confidence interval

More sets =⇒ better variance estimate, but poorer error.

Some people use as few as 10 sets, but I prefer 32.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 30 / 37

Randomised QMC

For Sobol sequences, randomisation is achieved through digital scrambling:

x(i ,m) = x(i)∨ X (m)

where the exclusive-or operation ∨ is applied bitwise so that

0.1010011

∨ 0.0110110

= 0.1100101

The benefit of the digital scrambling is that it maintains the special
properties of the Sobol sequence.

MATLAB’s sobolset supports digital scrambling.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 31 / 37

Dominant Dimensions

QMC points have the property that the points are more uniformly
distributed through the lowest dimensions. Consequently, important
to think about how the dimensions are allocated to the problem.

Previously, have generated correlated Normals through Y = LX
with X i.i.d. N(0, 1) Normals.

For Monte Carlo, Y ’s have same distribution for any L such that
LLT = Σ, but for QMC different L’s are equivalent to a change of
coordinates and it can make a big difference.

Usually best to use a PCA construction L = U Λ1/2 with eigenvalues
arranged in descending order, from largest (=⇒ most important?)
to smallest.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 32 / 37

Finance Applications
1D call option – Monte Carlo convergence

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

N

E
rr

or

MC convergence

 Error
 MC error bound

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 33 / 37

Finance Applications
1D call option – Sobol QMC convergence

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

M*N

E
rr

or

QMC convergence

 Error
 QMC error bound

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 34 / 37

Application

Main piece of MATLAB code:

M = 2^p; % number of points in each set

N = 64; % number of sets of points

for n = 1:N

Ps = sobolset(1); % dimension 1

Ps = scramble(Ps,’MatousekAffineOwen’);

U = net(Ps,M)’;

Y = ncfinv(U); % inverts Normal cum. fn.

S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

Fave(n) = sum(F)/M;

end

V = sum(Fave)/N;

sd = sqrt((sum(Fave.^2)/N - (sum(Fave)/N)^2)/(N-1));

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 35 / 37

Final comments

Control variates can sometimes be very useful – needs good insight to
find a suitable control variate

Importance sampling is very useful when the main contribution to the
expectation comes from rare extreme events

Stratified sampling is very effective in 1D, but not so clear how to use
it in multiple dimensions

Latin Hypercube is one generalisation – particularly effective when
function can be almost decomposed into a sum of 1D functions

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 36 / 37

Final words

quasi-Monte Carlo can give a much lower error than standard MC;
O(N−1) in best cases, instead of O(N−1/2)

randomised QMC is important to regain confidence interval

correct selection of dominant dimensions can also be important

Hard to predict which variance reduction approach will be most
effective

Advice: when facing a new class of applications, try each one, and
don’t forget you can sometimes combine different techniques
(e.g. stratified sampling with antithetic variables, or Latin Hypercube
with importance sampling)

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 37 / 37

