Monte Carlo Methods for Uncertainty Quantification

Mike Giles
Mathematical Institute, University of Oxford

KU Leuven Summer School on Uncertainty Quantification

May 30-31, 2013

Lecture outline

Lecture 1: Monte Carlo basics

- random number generation
- Monte Carlo estimation
- Law of Large Numbers and confidence interval
- basic mean/variance manipulations
- antithetic sampling
- control variate

Lecture 2: Variance reduction

- importance sampling
- stratified sampling
- Latin Hypercube
- randomised quasi-Monte Carlo

Lecture outline

Lecture 3: financial applications

- financial models
- approximating SDEs
- weak and strong convergence
- mean square error decomposition
- multilevel Monte Carlo

Lecture 4: PDE applications

- PDEs with uncertainty
- examples
- multilevel Monte Carlo

Random Number Generation

Monte Carlo simulation starts with random number generation, usually split into 2 stages:

- generation of independent uniform $(0,1)$ random variables
- conversion into random variables with a particular distribution (e.g. Normal)

Very important: never write your own generator, always use a well validated generator from a reputable source

- Matlab
- NAG
- Intel MKL
- AMD ACML

Uniform Random Variables

Pseudo-random number generators use a deterministic (i.e. repeatable) algorithm to generate a sequence of (apparently) random numbers on $(0,1)$ interval.

What defines a good generator?

- a long period - how long it takes before the sequence repeats itself 2^{32} is not enough - need at least 2^{40}
- various statistical tests to measure "randomness" well validated software will have gone through these checks
- trivially-parallel Monte Carlo simulation on a compute cluster requires the ability to "skip-ahead" to an arbitrary starting point in the sequence
first computer gets first 10^{6} numbers
second computer gets second 10^{6} numbers, etc

Uniform Random Variables

For information see

- Intel MKL information www.intel.com/cd/software/products/asmo-na/eng/266864.htm
- NAG library information www.nag.co.uk/numeric/CL/nagdoc_cl08/pdf/G05/g05_conts.pdf
- Matlab information www.mathworks.com/moler/random.pdf
- Wikipedia information

```
en.wikipedia.org/wiki/Random_number_generation
en.wikipedia.org/wiki/List_of_random_number_generators
en.wikipedia.org/wiki/Mersenne_Twister
```


Normal Random Variables

$N(0,1)$ Normal random variables (mean 0 , variance 1) have the probability distribution

$$
p(x)=\phi(x) \equiv \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)
$$

The Box-Muller method takes two independent uniform $(0,1)$ random numbers y_{1}, y_{2}, and defines

$$
\begin{aligned}
& x_{1}=\sqrt{-2 \log \left(y_{1}\right)} \cos \left(2 \pi y_{2}\right) \\
& x_{2}=\sqrt{-2 \log \left(y_{1}\right)} \sin \left(2 \pi y_{2}\right)
\end{aligned}
$$

It can be proved that x_{1} and x_{2} are $N(0,1)$ random variables, and independent:

$$
p_{\text {joint }}\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)
$$

Inverse CDF

A more flexible alternative uses the cumulative distribution function $C D F(x)$ for a random variable X, defined as

$$
C D F(x)=\mathbb{P}(X<x)
$$

If Y is a uniform $(0,1)$ random variable, then can define X by

$$
X=C D F^{-1}(Y)
$$

For $N(0,1)$ Normal random variables,

$$
C D F(x)=\Phi(x) \equiv \int_{-\infty}^{x} \phi(s) \mathrm{d} s=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} s^{2}\right) \mathrm{d} s
$$

$\Phi^{-1}(y)$ is approximated in software in a very similar way to the implementation of cos, sin, log.

Normal Random Variables

Normal Random Variables

Some useful weblinks:

- home.online.no/~pjacklam/notes/invnorm/ code for Φ^{-1} function in many different languages
- lib.stat.cmu.edu/apstat/241/ single and double precision code in FORTRAN
- en.wikipedia.org/wiki/Normal_distribution Wikipedia definition of Φ matches mine
- mathworld.wolfram.com/NormalDistribution.html mathworld.wolfram.com/DistributionFunction.html Good Mathworld items, but their definition of Φ is slightly different; they call the cumulative distribution function $D(x)$.

Normal Random Variables

The Normal CDF $\Phi(x)$ is related to the error function $\operatorname{erf}(x)$ through

$$
\Phi(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \quad \Longrightarrow \quad \Phi^{-1}(y)=\sqrt{2} \operatorname{erf}^{-1}(2 y-1)
$$

This is the function I use in Matlab:

$$
\begin{aligned}
& \% \mathrm{x}=\mathrm{ncfinv}(\mathrm{y}) \\
& \% \\
& \% \text { inverse Normal CDF } \\
& \text { function } \mathrm{x}=\operatorname{ncfinv}(\mathrm{y}) \\
& \mathrm{x}=\operatorname{sqrt}(2) * \operatorname{erfinv}(2 * \mathrm{y}-1)
\end{aligned}
$$

Correlated Normal Random Variables

We often need a vector y of Normally distributed variables with a prescribed covariance matrix, so that $\mathbb{E}\left[y y^{\top}\right]=\Sigma$.

Suppose x is a vector of independent $N(0,1)$ variables, and define $y=L x$.
Each element of y is Normally distributed, $\mathbb{E}[y]=L \mathbb{E}[x]=0$, and

$$
\mathbb{E}\left[y y^{T}\right]=\mathbb{E}\left[L x x^{T} L^{T}\right]=L \mathbb{E}\left[x x^{T}\right] L^{T}=L L^{T}
$$

since $\mathbb{E}\left[x x^{T}\right]=/$ because

- elements of x are independent $\Longrightarrow \mathbb{E}\left[x_{i} x_{j}\right]=0$ for $i \neq j$
- elements of x have unit variance $\Longrightarrow \mathbb{E}\left[x_{i}^{2}\right]=1$

Hence choose L so that $L L^{T}=\Sigma$

Correlated Normal Random Variables

One choice is a Cholesky factorisation in which L is lower-triangular.

Alternatively, if Σ has eigenvalues $\lambda_{i} \geq 0$, and orthonormal eigenvectors u_{i}, so that

$$
\Sigma u_{i}=\lambda_{i} u_{i}, \quad \Longrightarrow \quad \Sigma U=U \Lambda
$$

then

$$
\Sigma=U \Lambda U^{T}=L L^{T}
$$

where

$$
L=U \Lambda^{1 / 2}
$$

This is the PCA decomposition; it is no better than the Cholesky decomposition for standard Monte Carlo simulation, but is often better for stratified sampling and quasi-Monte Carlo methods.

Expectation and Integration

If X is a random variable uniformly distributed on $[0,1]$ then the expectation of a function $f(X)$ is equal to its integral:

$$
\bar{f}=\mathbb{E}[f(X)]=l[f]=\int_{0}^{1} f(x) \mathrm{d} x
$$

The generalisation to a d-dimensional "cube" $I^{d}=[0,1]^{d}$, is

$$
\bar{f}=\mathbb{E}[f(X)]=I[f]=\int_{I^{d}} f(x) \mathrm{d} x .
$$

Thus the problem of finding expectations is directly connected to the problem of numerical quadrature (integration), often in very large dimensions.

Expectation and Integration

Suppose we have a sequence X_{n} of independent samples from the uniform distribution.

An approximation to the expectation/integral is given by

$$
I_{N}[f]=N^{-1} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

Two key features:

- Unbiased: $\quad \mathbb{E}\left[I_{N}[f]\right]=I[f]$
- Convergent: $\lim _{N \rightarrow \infty} I_{N}[f]=I[f]$

Expectation and Integration

In general, define

- error $\varepsilon_{N}(f)=I[f]-I_{N}[f]$
- bias $=\mathbb{E}\left[\varepsilon_{N}(f)\right]$
- RMSE, "root-mean-square-error" $=\sqrt{\mathbb{E}\left[\left(\varepsilon_{N}(f)\right)^{2}\right]}$

The Central Limit Theorem proves (roughly speaking) that for large N

$$
\varepsilon_{N}(f) \sim \sigma N^{-1 / 2} Z
$$

with Z a $N(0,1)$ random variable and σ^{2} the variance of f :

$$
\sigma^{2}=\mathbb{E}\left[(f-\bar{f})^{2}\right]=\int_{I^{d}}(f(x)-\bar{f})^{2} \mathrm{~d} x
$$

Expectation and Integration

More precisely, provided σ is finite, then as $N \longrightarrow \infty$,

$$
\operatorname{CDF}\left(N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right) \longrightarrow \operatorname{CDF}(Z)
$$

so that

$$
\mathbb{P}\left[N^{1 / 2} \sigma^{-1} \varepsilon_{N}<s\right] \rightarrow \mathbb{P}[Z<s]=\Phi(s)
$$

and

$$
\begin{aligned}
& \mathbb{P}\left[\left|N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right|>s\right] \rightarrow \mathbb{P}[|Z|>s]=2 \Phi(-s) \\
& \mathbb{P}\left[\left|N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right|<s\right] \longrightarrow \mathbb{P}[|Z|<s]=1-2 \Phi(-s)
\end{aligned}
$$

Expectation and Integration

Given N samples, the empirical variance is

$$
\tilde{\sigma}^{2}=N^{-1} \sum_{n=1}^{N}\left(f\left(x_{n}\right)-I_{N}\right)^{2}=I_{N}^{(2)}-\left(I_{N}\right)^{2}
$$

where

$$
I_{N}=N^{-1} \sum_{n=1}^{N} f\left(x_{n}\right), \quad I_{N}^{(2)}=N^{-1} \sum_{n=1}^{N}\left(f\left(x_{n}\right)\right)^{2}
$$

$\widetilde{\sigma}^{2}$ is a slightly biased estimator for σ^{2}; an unbiased estimator is

$$
\widehat{\sigma}^{2}=(N-1)^{-1} \sum_{n=1}^{N}\left(f\left(x_{n}\right)-I_{N}\right)^{2}=\frac{N}{N-1}\left(I_{N}^{(2)}-\left(I_{N}\right)^{2}\right)
$$

Expectation and Integration

How many samples do we need for an accuracy of $\bar{\varepsilon}$ with probability c ?
Since

$$
\mathbb{P}\left[N^{1 / 2} \sigma^{-1}|\varepsilon|<s\right] \approx 1-2 \Phi(-s)
$$

define s so

$$
1-2 \Phi(-s)=c \Longleftrightarrow s=-\Phi^{-1}((1-c) / 2)
$$

c	0.683	0.9545	0.9973	0.99994
s	1.0	2.0	3.0	4.0

Then $|\varepsilon|<N^{-1 / 2} \sigma s$ with probability c, so to get $|\varepsilon|<\bar{\varepsilon}$ we can put

$$
N^{-1 / 2} \widehat{\sigma} s(c)=\bar{\varepsilon} \quad \Longrightarrow \quad N=\left(\frac{\widehat{\sigma} s(c)}{\bar{\varepsilon}}\right)^{2}
$$

Note: twice as much accuracy requires 4 times as many samples.

Expectation and Integration

How does Monte Carlo integration compare to grid based methods for d-dimensional integration?

MC error is proportional to $N^{-1 / 2}$ independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with $M=N^{1 / d}$ points in each direction has

$$
\text { Error } \propto M^{-2}=N^{-2 / d}
$$

This scales better than MC for $d<4$, but worse for $d>4$. i.e. MC is better at handling high dimensional problems.

Finance Applications

Geometric Brownian motion for a single asset:

$$
S_{T}=S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{T}\right)
$$

W_{T} is $N(0, T)$ random variable, so can put

$$
W_{T}=\sqrt{T} Y=\sqrt{T} \Phi^{-1}(U)
$$

where Y is a $N(0,1)$ r.v. and U is a uniform $(0,1)$ r.v.

We are then interested in the price of financial options which can be expressed as

$$
V=\mathbb{E}[f(S(T))]=\int_{0}^{1} f(S(T)) \mathrm{d} U
$$

for some "payoff" function $f(S)$.

Finance Applications

For the European call option,

$$
f(S)=\exp (-r T)(S-K)^{+}
$$

while for the European put option

$$
f(S)=\exp (-r T)(K-S)^{+}
$$

where K is the strike price, and $(y)^{+} \equiv \max (0, y)$.

For numerical experiments we will consider a European call with $r=0.05, \quad \sigma=0.2, \quad T=1, \quad S_{0}=110, \quad K=100$.

The analytic value is known for comparison.

Finance Applications

Finance Applications

MC calculation with up to 10^{6} paths; true value $=17.663$

Finance Applications

The upper and lower bounds are given by

$$
\operatorname{Mean} \pm \frac{3 \widetilde{\sigma}}{\sqrt{N}}
$$

so more than a 99.7% probability that the true value lies within these bounds.

Finance Applications

MATLAB code:

```
r=0.05; sig=0.2; T=1; S0=110; K=100;
N = 1:1000000;
U = rand(1,max(N)); % uniform random variable
Y = ncfinv(U); % inverts Normal cum. fn.
S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);
F = exp(-r*T)*max (0,S-K);
```

sum1 $=$ cumsum(F); $\quad \%$ cumulative summation of
sum2 $=$ cumsum(F.^2); $\%$ payoff and its square
val = sum1./N;
rms $=$ sqrt(sum2./N - val. ${ }^{\wedge} 2$);

Finance Applications

```
err = european_call(r,sig,T,S0,K,'value') - val;
plot(N,err,
        N,err-3*rms./sqrt(N)
        N,err+3*rms./sqrt(N))
axis([0 length(N) -1 1])
xlabel('N'); ylabel('Error')
legend('MC error','lower bound','upper bound')
```


Finance Applications

New application: a European call based on average of M stocks which are correlated.

$$
S_{i}(T)=S_{i}(0) \exp \left(\left(r-\frac{1}{2} \sigma_{i}^{2}\right) T+\sigma_{i} W_{i}(T)\right)
$$

If $\sigma_{i} W_{i}(T)$ has covariance matrix Σ, then use Cholesky factorisation $L L^{T}=\Sigma$ to get

$$
S_{i}(T)=S_{i}(0) \exp \left(\left(r-\frac{1}{2} \sigma_{i}^{2}\right) T+\sum_{j} L_{i j} Y_{j}\right)
$$

where Y_{j} are independent $N(0,1)$ random variables.
Each Y_{i} can in turn be expressed as $\Phi^{-1}\left(U_{i}\right)$ where the U_{i} are uniformly, and independently, distributed on $[0,1]$.

Finance Applications

The payoff is

$$
f=\exp (-r T)\left(\frac{1}{M} \sum_{i} S_{i}-K\right)^{+}
$$

and so the expectation can be written as the M-dimensional integral

$$
\int_{I M} f(U) \mathrm{d} U
$$

This is a good example for Monte Carlo simulation - cost scales linearly with the number of stocks, whereas it would be exponential for grid-based numerical integration.

Finance Applications

MC calculation with up to 10^{6} paths

Finance Applications

MATLAB code:

```
r=0.05; sig=0.2; T=1; S0=110; K=100;
Sigma = sig^2*T*( eye(5) + 0.1*(ones(5)-eye(5)));
L = chol(Sigma,'lower');
```

```
N = 1:1000000;
```

N = 1:1000000;
U = rand(5,max(N)); % uniform random variable
U = rand(5,max(N)); % uniform random variable
Y = ncfinv(U); % inverts Normal cum. fn.
Y = ncfinv(U); % inverts Normal cum. fn.
S = S0*exp((r-sig^2/2)*T + L*Y);
S = S0*exp((r-sig^2/2)*T + L*Y);
F = exp (-r*T)*max (0,sum (S,1)/5-K);

```
F = exp (-r*T)*max (0,sum (S,1)/5-K);
```

sum1 $=$ cumsum(F); $\%$ cumulative summation of
sum2 $=$ cumsum(F.^2); $\%$ payoff and its square
val = sum1./N;
rms $=$ sqrt(sum2./N - val. ${ }^{\wedge} 2$);

Summary so far

- Monte Carlo quadrature is straightforward and robust
- confidence bounds can be obtained as part of the calculation
- can calculate the number of samples N needed for chosen accuracy
- much more efficient than grid-based methods for high dimensions
- accuracy $=O\left(N^{-1 / 2}\right)$, CPU time $=O(N)$
$\Longrightarrow \quad$ accuracy $=O\left(\right.$ CPU time $\left.{ }^{-1 / 2}\right)$
$\Longrightarrow \quad \mathrm{CPU}$ time $=O\left(\right.$ accuracy $\left.^{-2}\right)$
- the key now is to reduce number of samples required by reducing the variance - antithetic variables and control variates in this lecture

Elementary Manipulations

If X_{1} and X_{2} are independent continuous random variables, then

$$
p_{\text {joint }}\left(x_{1}, x_{2}\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)
$$

and hence

$$
\begin{aligned}
\mathbb{E}\left[f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right] & =\iint f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) p_{\text {joint }}\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& =\iint f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& =\left(\int f_{1}\left(x_{1}\right) p_{1}\left(x_{1}\right) \mathrm{d} x_{1}\right)\left(\int f_{2}\left(x_{2}\right) p_{2}\left(x_{2}\right) \mathrm{d} x_{2}\right) \\
& =\mathbb{E}\left[f_{1}\left(X_{1}\right)\right] \mathbb{E}\left[f_{2}\left(X_{2}\right)\right]
\end{aligned}
$$

and in particular

$$
\begin{aligned}
\operatorname{Cov}\left[X_{1}, X_{2}\right] & \equiv \mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{2}-\mathbb{E}\left[X_{2}\right]\right)\right] \\
& =\mathbb{E}\left[X_{1}-\mathbb{E}\left[X_{1}\right]\right] \mathbb{E}\left[X_{2}-\mathbb{E}\left[X_{2}\right]\right]=0
\end{aligned}
$$

Elementary Manipulations

If a, b are random variables, and λ, μ are constants, then

$$
\begin{aligned}
\mathbb{E}[a+\mu] & =\mathbb{E}[a]+\mu \\
\mathbb{V}[a+\mu] & =\mathbb{V}[a] \\
\mathbb{E}[\lambda a] & =\lambda \mathbb{E}[a] \\
\mathbb{V}[\lambda a] & =\lambda^{2} \mathbb{V}[a] \\
\mathbb{E}[a+b] & =\mathbb{E}[a]+\mathbb{E}[b]
\end{aligned}
$$

where

$$
\mathbb{V}[a] \equiv \mathbb{E}\left[(a-\mathbb{E}[a])^{2}\right]=\mathbb{E}\left[a^{2}\right]-(\mathbb{E}[a])^{2}
$$

Elementary Manipulations

In addition,

$$
\mathbb{V}[a+b]=\mathbb{V}[a]+2 \operatorname{Cov}[a, b]+\mathbb{V}[b]
$$

where

$$
\operatorname{Cov}[a, b] \equiv \mathbb{E}[(a-\mathbb{E}[a])(b-\mathbb{E}[b])]
$$

Since

$$
|\operatorname{Cov}[a, b]| \leq \sqrt{\mathbb{V}[a] \mathbb{V}[b]}
$$

it follows that

$$
\begin{aligned}
\mathbb{V}[a+b] & \leq(\sqrt{\mathbb{V}[a]}+\sqrt{\mathbb{V}[b]})^{2} \\
\Longrightarrow \sqrt{\mathbb{V}[a+b]} & \leq \sqrt{\mathbb{V}[a]}+\sqrt{\mathbb{V}[b]}
\end{aligned}
$$

If a, b are independent then $\mathbb{V}[a+b]=\mathbb{V}[a]+\mathbb{V}[b]$, and more generally the variance of a sum of independents is equal to the sum of their variances.

Antithetic variables

The simple estimator for $\mathbb{E}[f(X)]$ from the last lecture has the form

$$
N^{-1} \sum_{i} f\left(X^{(i)}\right)
$$

where $X^{(i)}$ is the $i^{\text {th }}$ independent sample of the random variable X.

If X has a symmetric probability distribution, $-X$ is just as likely. Antithetic estimator replaces $f\left(X^{(i)}\right)$ by

$$
\bar{f}^{(i)}=\frac{1}{2}\left(f\left(X^{(i)}\right)+f\left(-X^{(i)}\right)\right)
$$

Clearly still unbiased since

$$
\mathbb{E}[\bar{f}]=\frac{1}{2}(\mathbb{E}[f(X)]+\mathbb{E}[f(-X)])=\mathbb{E}[f(X)]
$$

Antithetic variables

The variance is given by

$$
\begin{aligned}
\mathbb{V}[\bar{f}] & =\frac{1}{4}(\mathbb{V}[f(X)]+2 \operatorname{Cov}[f(X), f(-X)]+\mathbb{V}[f(-X)]) \\
& =\frac{1}{2}(\mathbb{V}[f(X)]+\operatorname{Cov}[f(X), f(-X)])
\end{aligned}
$$

The variance is always reduced, but the cost is almost doubled, so net benefit only if $\operatorname{Cov}[f(X), f(-X)]<0$.

Two extremes:

- A linear payoff, $f=a+b X$, is integrated exactly since $\bar{f}=a$ and $\operatorname{Cov}[f(X), f(-X)]=-\mathbb{V}[f]$
- A symmetric payoff $f(X)=f(-X)$ is the worst case since $\operatorname{Cov}[f(X), f(-X)]=\mathbb{V}[f]$

General assessment - usually not very helpful, but can be good in particular cases where the payoff is nearly linear

Control Variates

Suppose we want to estimate $\mathbb{E}[f(X)]$, and there is another function $g(X)$ for which we know $\mathbb{E}[g(X)]$.

We can use this by defining a new estimator

$$
\widehat{f}=\bar{f}-\lambda(\bar{g}-\mathbb{E}[g])
$$

Again unbiased since $\mathbb{E}[\widehat{f}]=\mathbb{E}[\bar{f}]=\mathbb{E}[f]$

Control Variates

For a single sample,

$$
\begin{aligned}
\mathbb{V}[f-\lambda(g-\mathbb{E}[g])] & =\mathbb{V}[f-\lambda g] \\
& =\mathbb{V}[f]-2 \lambda \operatorname{Cov}[f, g]+\lambda^{2} \mathbb{V}[g]
\end{aligned}
$$

For an average of N samples,

$$
\mathbb{V}[\bar{f}-\lambda(\bar{g}-\mathbb{E}[g])]=N^{-1}\left(\mathbb{V}[f]-2 \lambda \operatorname{Cov}[f, g]+\lambda^{2} \mathbb{V}[g]\right)
$$

To minimise this, the optimum value for λ is

$$
\lambda=\frac{\operatorname{Cov}[f, g]}{\mathbb{V}[g]}
$$

Control Variates

The resulting variance is

$$
N^{-1} \mathbb{V}[f]\left(1-\frac{(\operatorname{Cov}[f, g])^{2}}{\mathbb{V}[f] \mathbb{V}[g]}\right)=N^{-1} \mathbb{V}[f]\left(1-\rho^{2}\right)
$$

where $-1<\rho<1$ is the correlation between f and g.

The challenge is to choose a good g which is well correlated with f. The covariance, and hence the optimal λ, can be estimated numerically.

