
Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

KU Leuven Summer School on Uncertainty Quantification

May 30–31, 2013

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 1 / 40



Lecture outline

Lecture 1: Monte Carlo basics

random number generation

Monte Carlo estimation

Law of Large Numbers and confidence interval

basic mean/variance manipulations

antithetic sampling

control variate

Lecture 2: Variance reduction

importance sampling

stratified sampling

Latin Hypercube

randomised quasi-Monte Carlo
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Lecture outline

Lecture 3: financial applications

financial models

approximating SDEs

weak and strong convergence

mean square error decomposition

multilevel Monte Carlo

Lecture 4: PDE applications

PDEs with uncertainty

examples

multilevel Monte Carlo
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Random Number Generation

Monte Carlo simulation starts with random number generation, usually
split into 2 stages:

generation of independent uniform (0, 1) random variables

conversion into random variables with a particular distribution
(e.g. Normal)

Very important: never write your own generator, always use a well
validated generator from a reputable source

Matlab

NAG

Intel MKL

AMD ACML
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Uniform Random Variables

Pseudo-random number generators use a deterministic (i.e. repeatable)
algorithm to generate a sequence of (apparently) random numbers on
(0, 1) interval.

What defines a good generator?

a long period – how long it takes before the sequence repeats itself
232 is not enough – need at least 240

various statistical tests to measure “randomness”
well validated software will have gone through these checks

trivially-parallel Monte Carlo simulation on a compute cluster
requires the ability to “skip-ahead” to an arbitrary starting point
in the sequence

first computer gets first 106 numbers
second computer gets second 106 numbers, etc
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Uniform Random Variables

For information see

Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

NAG library information
www.nag.co.uk/numeric/CL/nagdoc cl08/pdf/G05/g05 conts.pdf

Matlab information
www.mathworks.com/moler/random.pdf

Wikipedia information
en.wikipedia.org/wiki/Random number generation

en.wikipedia.org/wiki/List of random number generators

en.wikipedia.org/wiki/Mersenne Twister
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Normal Random Variables

N(0, 1) Normal random variables (mean 0, variance 1) have the
probability distribution

p(x) = φ(x) ≡ 1√
2π

exp(− 1
2x

2)

The Box-Muller method takes two independent uniform (0, 1) random
numbers y1, y2, and defines

x1 =
√

−2 log(y1) cos(2πy2)

x2 =
√

−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random variables, and
independent:

pjoint(x1, x2) = p(x1) p(x2)
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Inverse CDF

A more flexible alternative uses the cumulative distribution function
CDF (x) for a random variable X , defined as

CDF (x) = P(X < x)

If Y is a uniform (0, 1) random variable, then can define X by

X = CDF−1(Y ).

For N(0, 1) Normal random variables,

CDF (x) = Φ(x) ≡
∫ x

−∞

φ(s) ds =
1√
2π

∫ x

−∞

exp
(
− 1

2s
2
)
ds

Φ−1(y) is approximated in software in a very similar way to the
implementation of cos, sin, log.
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Normal Random Variables
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Normal Random Variables

Some useful weblinks:

home.online.no/∼pjacklam/notes/invnorm/

code for Φ−1 function in many different languages

lib.stat.cmu.edu/apstat/241/

single and double precision code in FORTRAN

en.wikipedia.org/wiki/Normal distribution

Wikipedia definition of Φ matches mine

mathworld.wolfram.com/NormalDistribution.html

mathworld.wolfram.com/DistributionFunction.html

Good Mathworld items, but their definition of Φ is slightly different;
they call the cumulative distribution function D(x).
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Normal Random Variables

The Normal CDF Φ(x) is related to the error function erf(x) through

Φ(x) = 1
2 + 1

2 erf(x/
√
2) =⇒ Φ−1(y) =

√
2 erf

−1(2y−1)

This is the function I use in Matlab:

% x = ncfinv(y)

%

% inverse Normal CDF

function x = ncfinv(y)

x = sqrt(2)*erfinv(2*y-1);
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Correlated Normal Random Variables

We often need a vector y of Normally distributed variables with a
prescribed covariance matrix, so that E[y yT ] = Σ.

Suppose x is a vector of independent N(0, 1) variables, and define y = L x .

Each element of y is Normally distributed, E[y ] = LE[x ] = 0, and

E[y yT ] = E[L x xTLT ] = L E[x xT ] LT = L LT

since E[x xT ] = I because

elements of x are independent =⇒ E[xi xj ] = 0 for i 6= j

elements of x have unit variance =⇒ E[x2i ] = 1

Hence choose L so that LLT = Σ
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Correlated Normal Random Variables

One choice is a Cholesky factorisation in which L is lower-triangular.

Alternatively, if Σ has eigenvalues λi ≥ 0, and orthonormal eigenvectors
ui , so that

Σ ui = λi ui , =⇒ ΣU = U Λ

then
Σ = U ΛUT = L LT

where
L = U Λ1/2.

This is the PCA decomposition; it is no better than the Cholesky
decomposition for standard Monte Carlo simulation, but is often
better for stratified sampling and quasi-Monte Carlo methods.
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Expectation and Integration

If X is a random variable uniformly distributed on [0, 1] then the
expectation of a function f (X ) is equal to its integral:

f = E[f (X )] = I [f ] =

∫ 1

0
f (x)dx .

The generalisation to a d -dimensional “cube” I d = [0, 1]d , is

f = E[f (X )] = I [f ] =

∫

I d
f (x)dx .

Thus the problem of finding expectations is directly connected to the
problem of numerical quadrature (integration), often in very large
dimensions.
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Expectation and Integration

Suppose we have a sequence Xn of independent samples from the uniform
distribution.

An approximation to the expectation/integral is given by

IN [f ] = N−1
N∑

n=1

f (xn).

Two key features:

Unbiased: E

[
IN [f ]

]
= I [f ]

Convergent: lim
N→∞

IN [f ] = I [f ]
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Expectation and Integration

In general, define

error εN(f ) = I [f ]− IN [f ]

bias = E[εN(f )]

RMSE, “root-mean-square-error” =
√

E[(εN(f ))2]

The Central Limit Theorem proves (roughly speaking) that for large N

εN(f ) ∼ σN−1/2 Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = E[(f − f )2] =

∫

I d

(
f (x)− f

)2
dx .
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Expectation and Integration

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN) −→ CDF(Z )

so that
P

[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and
P

[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z | > s] = 2 Φ(−s)

P

[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z | < s] = 1− 2 Φ(−s)
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Expectation and Integration

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(f (xn)− IN)
2 = I

(2)
N

− (IN)
2

where

IN = N−1
N∑

n=1

f (xn), I
(2)
N = N−1

N∑

n=1

(f (xn))
2

σ̃2 is a slightly biased estimator for σ2; an unbiased estimator is

σ̂2 = (N−1)−1
N∑

n=1

(f (xn)− IN)
2 =

N

N−1

(
I
(2)
N − (IN)

2
)
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Expectation and Integration

How many samples do we need for an accuracy of ε with probability c?

Since
P

[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

define s so
1− 2 Φ(−s) = c ⇐⇒ s = −Φ−1((1−c)/2)

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

Then |ε| < N−1/2 σ s with probability c , so to get |ε| < ε we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many samples.
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Expectation and Integration

How does Monte Carlo integration compare to grid based methods for
d -dimensional integration?

MC error is proportional to N−1/2 independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with
M = N1/d points in each direction has

Error ∝ M−2 = N−2/d

This scales better than MC for d < 4, but worse for d > 4.
i.e. MC is better at handling high dimensional problems.
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Finance Applications

Geometric Brownian motion for a single asset:

ST = S0 exp
(
(r − 1

2σ
2)T + σWT

)

WT is N(0,T ) random variable, so can put

WT =
√
T Y =

√
T Φ−1(U)

where Y is a N(0, 1) r.v. and U is a uniform (0, 1) r.v.

We are then interested in the price of financial options which can be
expressed as

V = E [f (S(T ))] =

∫ 1

0
f (S(T )) dU,

for some “payoff” function f (S).
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Finance Applications

For the European call option,

f (S) = exp(−rT ) (S−K )+

while for the European put option

f (S) = exp(−rT ) (K−S)+

where K is the strike price, and (y)+ ≡ max(0, y).

For numerical experiments we will consider a European call with
r=0.05, σ = 0.2, T =1, S0=110, K=100.

The analytic value is known for comparison.

Mike Giles (Oxford) Monte Carlo methods May 30–31, 2013 22 / 40



Finance Applications
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Finance Applications

MC calculation with up to 106 paths; true value = 17.663
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Finance Applications

The upper and lower bounds are given by

Mean ± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies within
these bounds.
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Finance Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1:1000000;

U = rand(1,max(N)); % uniform random variable

Y = ncfinv(U); % inverts Normal cum. fn.

S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.^2); % payoff and its square

val = sum1./N;

rms = sqrt(sum2./N - val.^2);
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Finance Applications

err = european call(r,sig,T,S0,K,’value’) - val;

plot(N,err, ...

N,err-3*rms./sqrt(N), ...

N,err+3*rms./sqrt(N))

axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’)

legend(’MC error’,’lower bound’,’upper bound’)
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Finance Applications

New application: a European call based on average of M stocks which are
correlated.

Si(T ) = Si(0) exp
(
(r − 1

2σ
2
i )T + σiWi (T )

)

If σiWi(T ) has covariance matrix Σ, then use Cholesky factorisation
LLT = Σ to get

Si(T ) = Si(0) exp


(r − 1

2σ
2
i )T +

∑

j

LijYj




where Yj are independent N(0, 1) random variables.

Each Yi can in turn be expressed as Φ−1(Ui ) where the Ui are uniformly,
and independently, distributed on [0, 1].
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Finance Applications

The payoff is

f = exp(−rT )

(
1

M

∑

i

Si − K

)+

and so the expectation can be written as the M-dimensional integral

∫

IM
f (U) dU.

This is a good example for Monte Carlo simulation – cost scales linearly
with the number of stocks, whereas it would be exponential for grid-based
numerical integration.
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Finance Applications

MC calculation with up to 106 paths
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Finance Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

Sigma = sig^2*T*( eye(5) + 0.1*(ones(5)-eye(5)));

L = chol(Sigma,’lower’);

N = 1:1000000;

U = rand(5,max(N)); % uniform random variable

Y = ncfinv(U); % inverts Normal cum. fn.

S = S0*exp((r-sig^2/2)*T + L*Y);

F = exp(-r*T)*max(0,sum(S,1)/5-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.^2); % payoff and its square

val = sum1./N;

rms = sqrt(sum2./N - val.^2);
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Summary so far

Monte Carlo quadrature is straightforward and robust

confidence bounds can be obtained as part of the calculation

can calculate the number of samples N needed for chosen accuracy

much more efficient than grid-based methods for high dimensions

accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)

the key now is to reduce number of samples required by reducing
the variance – antithetic variables and control variates in this lecture
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Elementary Manipulations
If X1 and X2 are independent continuous random variables, then

pjoint(x1, x2) = p1(x1) p2(x2)

and hence

E[f1(X1) f2(X2)] =

∫ ∫
f1(x1) f2(x2) pjoint(x1, x2) dx1 dx2

=

∫ ∫
f1(x1) f2(x2) p1(x1) p2(x2) dx1 dx2

=

(∫
f1(x1) p1(x1) dx1

)(∫
f2(x2) p2(x2) dx2

)

= E[f1(X1)] E[f2(X2)]

and in particular

Cov[X1,X2] ≡ E

[
(X1 − E[X1]) (X2 − E[X2])

]

= E[X1 − E[X1] ] E[X2 − E[X2] ] = 0
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Elementary Manipulations

If a, b are random variables, and λ, µ are constants, then

E[a + µ] = E[a] + µ

V[a + µ] = V[a]

E[λ a] = λ E[a]

V[λ a] = λ2
V[a]

E[a + b] = E[a] + E[b]

where
V[a] ≡ E

[
(a − E[a])2

]
= E

[
a2
]
− (E[a])2
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Elementary Manipulations

In addition,
V[a+b] = V[a] + 2Cov[a, b] +V[b]

where
Cov[a, b] ≡ E

[
(a − E[a]) (b − E[b])

]

Since
|Cov[a, b]| ≤

√
V[a] V[b]

it follows that

V[a+b] ≤
(√

V[a] +
√

V[b]
)2

=⇒
√

V[a+b] ≤
√

V[a] +
√

V[b]

If a, b are independent then V[a+b] = V[a] +V[b], and more generally the
variance of a sum of independents is equal to the sum of their variances.
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Antithetic variables

The simple estimator for E[f (X )] from the last lecture has the form

N−1
∑

i

f (X (i))

where X (i) is the i th independent sample of the random variable X .

If X has a symmetric probability distribution, −X is just as likely.
Antithetic estimator replaces f (X (i)) by

f
(i)

= 1
2

(
f (X (i)) + f (−X (i))

)

Clearly still unbiased since

E
[
f
]

= 1
2

(
E[f (X )] + E[f (−X )]

)
= E[f (X )]
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Antithetic variables
The variance is given by

V[f ] = 1
4

(
V[f (X )] + 2Cov[f (X ), f (−X )] +V[f (−X )]

)

= 1
2

(
V[f (X )] + Cov[f (X ), f (−X )]

)

The variance is always reduced, but the cost is almost doubled, so net
benefit only if Cov[f (X ), f (−X )] < 0.

Two extremes:

A linear payoff, f = a + b X , is integrated exactly since f =a and
Cov[f (X ), f (−X )] = −V[f ]

A symmetric payoff f (X ) = f (−X ) is the worst case since
Cov[f (X ), f (−X )] = V[f ]

General assessment – usually not very helpful, but can be good in
particular cases where the payoff is nearly linear
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Control Variates

Suppose we want to estimate E[f (X )], and there is another function
g(X ) for which we know E[g(X )].

We can use this by defining a new estimator

f̂ = f − λ (g−E[g ])

Again unbiased since E[f̂ ] = E[f ] = E[f ]
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Control Variates

For a single sample,

V[f − λ (g−E[g ])] = V[f −λ g ]

= V[f ]− 2λCov[f , g ] + λ2
V[g ]

For an average of N samples,

V[f − λ (g−E[g ])] = N−1
(
V[f ]− 2λCov[f , g ] + λ2

V[g ]
)

To minimise this, the optimum value for λ is

λ =
Cov[f , g ]

V[g ]
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Control Variates

The resulting variance is

N−1
V[f ]

(
1− (Cov[f , g ])2

V[f ]V[g ]

)
= N−1

V[f ]
(
1− ρ2

)

where −1 < ρ < 1 is the correlation between f and g .

The challenge is to choose a good g which is well correlated with f .
The covariance, and hence the optimal λ, can be estimated numerically.
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