Lecture outline

Lecture 1: Monte Carlo basics
Monte Carlo Methods for Uncertainty Quantification ® random number generation
Monte Carlo estimation
Law of Large Numbers and confidence interval
Mike Giles

antithetic sampling

o

o

@ basic mean/variance manipulations
Mathematical Institute, University of Oxford 4
o

control variate

KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction
@ importance sampling
May 30-31, 2013 o :
@ stratified sampling
@ Latin Hypercube

@ randomised quasi-Monte Carlo

May 3031, 2013 1/40 May 3031, 2013 2/ 40
Lecture outline Random Number Generation

Monte Carlo simulation starts with random number generation, usually

Lecture 3: financial applications b
split into 2 stages:

financial models

©

L. @ generation of independent uniform (0, 1) random variables
approximating SDEs o ] ) ] o
@ conversion into random variables with a particular distribution

eak and strong convergence
W : rong convergen (e.g. Normal)

mean square error decomposition

multilevel Monte Carlo ] )
Very important: never write your own generator, always use a well

o validated generator from a reputable source
Lecture 4: PDE applications

@ Matlab
@ PDEs with uncertainty o NAG
@ examples @ Intel MKL
@ multilevel Monte Carlo o AMD ACML
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Uniform Random Variables Uniform Random Variables

Pseudo-random number generators use a deterministic (i.e. repeatable)

algorithm to generate a sequence of (apparently) random numbers on For information see

(0,1) interval. @ Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

i ?
What defines a good generator? o NAG library information

@ a long period — how long it takes before the sequence repeats itself www.nag. co.uk/numeric/CL/nagdoc_c108/pdf/G05/g05_conts . pdf

232 is not enough — need at least 240
@ various statistical tests to measure “randomness” @ Matlab information
well validated software will have gone through these checks www.mathworks . com/moler/random. pdf

@ trivially-parallel Monte Carlo simulation on a compute cluster
requires the ability to “skip-ahead” to an arbitrary starting point
in the sequence

@ Wikipedia information
en.wikipedia.org/wiki/Random_number_generation

en.wikipedia.org/wiki/List_of_random_number_generators

first computer gets first 10° numbers en.wikipedia.org/wiki/Mersenne _Twister
second computer gets second 10° numbers, etc
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Normal Random Variables Inverse CDF

A more flexible alternative uses the cumulative distribution function

N(0,1) N | rand iabl 0, vari 1) have th . .
(0,1) Normal random variables (mean 0, variance 1) have the CDF(x) for a random variable X, defined as

probability distribution
CDF(x) = P(X < x
P) = 0) = —= exp(= ) o R

The Box-Muller method takes two independent uniform (0,1) random

If Y is a uniform (0,1) random variable, then can define X by

_ -1
numbers y1, y», and defines X = CDF(Y).

Xy = —2log(y1) cos(2my»)

. For N(0,1) Normal random variables,
xg = +/—2log(y1) sin(2my») (0.1)
X 1 X
It can be proved that x; and x, are N(0,1) random variables, and CDF(x) = ®(x) = / ¢(s) ds = Nz / exp (— 35°) ds
independent: e oo
Pioint (X1, X2) = p(x1) p(x2) ®~1(y) is approximated in software in a very similar way to the

implementation of cos, sin, log.
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Normal Random Variables Normal Random Variables

1 4
3t ] Some useful weblinks:
0.8} @ home.online.no/~pjacklam/notes/invnorm/
code for @1 function in many different languages
0.6} @ lib.stat.cmu.edu/apstat/241/
= = single and double precision code in FORTRAN
& o) ® en.wikipedia.org/wiki/Normal distribution
0.41 Wikipedia definition of & matches mine
@ mathworld.wolfram.com/NormalDistribution.html
0.2t mathworld.wolfram.com/DistributionFunction.html
Good Mathworld items, but their definition of @ is slightly different;
they call the cumulative distribution function D(x).
0 -4 .
-4 4 0 0.5 1
X X
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Normal Random Variables Correlated Normal Random Variables
We often need a vector y of Normally distributed variables with a
The Normal CDF ®(x) is related to the error function erf(x) through prescribed covariance matrix, so that E[y y 7] = .
1,1 1) = —1(o,, _ _
Px)=3+3 erf(x/\/i) = () V2 erf (2y-1) Suppose x is a vector of independent N(0,1) variables, and define y = L x.
This is the function | use in Matlab: Each element of y is Normally distributed, E[y] = LE[x] = 0, and

% x = ncfinv(y) Elyy | =E[Lxx"LT]=LE[xx"] LT =LL"
yA

. T
% inverse Normal CDF since E[xx'] = I because

) ‘ @ elements of x are independent = E[x; x;] = 0 for i # j
function x = ncfinv(y) ) ] )
@ elements of x have unit variance = E[x7] =1

x = sqrt(2)*erfinv(2*y-1);
Hence choose L so that LLT = ¥
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Correlated Normal Random Variables

One choice is a Cholesky factorisation in which L is lower-triangular.

Alternatively, if ¥ has eigenvalues \; > 0, and orthonormal eigenvectors

u;, so that
Zu,-:)\,-u,-, — X U=UA
then
Y=UAUT=LLT
where

L= UAY2,

This is the PCA decomposition; it is no better than the Cholesky
decomposition for standard Monte Carlo simulation, but is often
better for stratified sampling and quasi-Monte Carlo methods.
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Expectation and Integration

Suppose we have a sequence X,, of independent samples from the uniform
distribution.

An approximation to the expectation /integral is given by

N
IN[F] = N"1D 7 F(xa).
n=1

Two key features:

@ Unbiased: E [/N[fﬂ = I[f]

o Convergent: lim In[f] = I[f]
N—oo
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Expectation and Integration

If X is a random variable uniformly distributed on [0, 1] then the
expectation of a function f(X) is equal to its integral:

1

f = E[f(X)] = I[f] = /O f(x) dx.

The generalisation to a d-dimensional “cube”’ /¢ = [0,1]9, is

f = E[f(X)] = I[f] = // () dx.

Thus the problem of finding expectations is directly connected to the

problem of numerical quadrature (integration), often in very large
dimensions.
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Expectation and Integration

In general, define
o error en(f) = I[f] — In[f]
@ bias = E[en(f)]

@ RMSE, “root-mean-square-error” =

E[(en(f))?]

The Central Limit Theorem proves (roughly speaking) that for large N
en(f) ~ o N~Y2 7

with Z a N(0,1) random variable and o2 the variance of f:

o2 = E[(f — F)2] = //d (F) - F)? ax.
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Expectation and Integration

More precisely, provided o is finite, then as N — oo,

CDF(NY267tep) — CDF(2)

so that
P [Nl/za_lglv < s] — P[Z<s] = ®(s)
and
PHNV%—%N‘ >s] s P[|Z] > 5] = 2 &(—s)
P H/vl/%—la,vj < s] 5 PZ<s] = 1-2d(—s)
May 20-31, 2013

Expectation and Integration

How many samples do we need for an accuracy of € with probability c?

Since
P [N1/20_1|€| <s|~1-2d(-s),

define s so
1-20(—s)=c <= s=-0"1(1-c)/2)

0.683
1.0

0.9545
2.0

0.9973
3.0

0.99994
4.0

Then || < N=1/2 5 s with probability ¢, so to get |¢| < E we can put
>2

Note: twice as much accuracy requires 4 times as many samples.

85_(c)

3

NY2Gs(c)=z = /v:(
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Expectation and Integration

Given N samples, the empirical variance is

N

= NS (F(xn) — In)? = 1) — (In)?

where

72 is a slightly biased estimator for ¢2; an unbiased estimator is

(’/(\/2) - (/N)2>

N

5% =(N=1)"" ) (f(xn) = Iv)’

n=1

N

N-1
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Expectation and Integration
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How does Monte Carlo integration compare to grid based methods for
d-dimensional integration?

1/2

MC error is proportional to N~*/< independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with
M = N9 points in each direction has

Error o« M2 = N—2/d

This scales better than MC for d < 4, but worse for d > 4.
i.e. MC is better at handling high dimensional problems.
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Finance Applications

Geometric Brownian motion for a single asset:

St =350 exp ((r— %02)T + 0 Wr)

W+ is N(0, T) random variable, so can put
Wr=VTY=VT o }(V)

where Y is a N(0,1) r.v. and U is a uniform (0,1) r.v.

We are then interested in the price of financial options which can be
expressed as

1
V = E[f(S(T))] = /O F(S(T)) U,

for some “payoff” function f(S).
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Finance Applications

Discounted payoff
200 . :

150}

100

0 0.2 0.4 0.6 0.8 1
U
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Finance Applications

For the European call option,

f(S) = exp(—rT) (S—K)*
while for the European put option

f(S) =exp(—rT) (K—S)"

where K is the strike price, and (y)™ = max(0, y).

For numerical experiments we will consider a European call with
r=0.05, 0=0.2, T=1, 5,=110, K=100.

The analytic value is known for comparison.
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Finance Applications

MC calculation with up to 10° paths; true value = 17.663

T T

MC error
lower bound |
upper bound

0.8

-
e
=

w
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Finance Applications Finance Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;
The upper and lower bounds are given by N = 1:1000000;
. U = rand(1,max(N)); % uniform random variable
Mean + 3_(7 Y = ncfinv(U); % inverts Normal cum. fn.
VN’ S = SOxexp((r-sig~2/2)*T + sig*sqrt(T)*Y);
F = exp(-r*T)#*max(0,S-K);
so more than a 99.7% probability that the true value lies within
these bounds. suml = cumsum(F) ; % cumulative summation of
sum2 = cumsum(F."2); % payoff and its square
val = suml./N;
rms = sqrt(sum2./N - val."2);
My 3031, 203 25/ 0 ey 3031, 203 26/ 40
Finance Applications Finance Applications

New application: a European call based on average of M stocks which are

correlated.
err = european_call(r,sig,T,S0,K, ’value’) - val; 5,-(T) — 5’.(0) exp ((r _ %U?)T-I—O‘;VV;(T))
plot(N,err, e If 0;W;(T) has covariance matrix X, then use Cholesky factorisation
N,err-3*rms./sqrt(N), ... LLT =¥ to get

N,err+3*rms./sqrt (N))
axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’) Si(T) = Si(0) exp | (r — %01.2)7'_1_ Z L;Y;
J

legend (’MC error’,’lower bound’,’upper bound’)

where Y; are independent N(0, 1) random variables.

Each Y; can in turn be expressed as CD_l(U,-) where the U; are uniformly,
and independently, distributed on [0, 1].
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Finance Applications Finance Applications

MC calculation with up to 10° paths

The payoff is 16

_|_
f=exp(—rT) %ZS,- - K

T
MC value

lower bound
upper bound

and so the expectation can be written as the M-dimensional integral 1551 :

/,M F(U) dU.

This is a good example for Monte Carlo simulation — cost scales linearly
with the number of stocks, whereas it would be exponential for grid-based
numerical integration.

Value

15H B

145 L L L L

0 1 2 3 4 5 6 7 8 9 10
N x 10°
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Finance Applications Summary so far

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

@ Monte Carlo quadrature is straightforward and robust
Sigma = sig”2xT*( eye(5) + 0.1x(ones(5)-eye(5))); @ confidence bounds can be obtained as part of the calculation
L = chol(Sigma,’lower’); @ can calculate the number of samples N needed for chosen accuracy
@ much more efficient than grid-based methods for high dimensions
N = 1:1000000; A _
U = rand(5,max(N)); % uniform random variable @ accuracy = O(N ), CPU time = O(N)
Y = ncfinv(U); % inverts Normal cum. fn. —  accuracy = O(CPU time_1/2)
S = SO*exp((r-sig~2/2)*T + LxY); ) 9
F = exp(-r+T)*max (0, sun(s,1)/5-K) ; = CPU time = O(accuracy )
suml = cumsum(F); :A, cumulative summation of @ the key now is to reduce number of samples required by reducing
sm{lz = Cumju%F' 2); % payoff and its square the variance — antithetic variables and control variates in this lecture
val = suml./N;

rms = sqrt(sum2./N - val."2);
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Elementary Manipulations Elementary Manipulations
If X1 and X, are independent continuous random variables, then

Pjoint(X1,X2) = p1(x1) p2(x2)
If a, b are random variables, and A, ;1 are constants, then

and hence
BIA(0G) A0] = [ [ AiGa) Be) pan(a,) b b 5{1 “} - 5[["]]”
at+pl = a
_ // f(x1) Hlx) pr(xa) pa(xe) dxi dxo E[\a] = AE[4]
V[a] = M2V[a]
= (/ fi(x1) p1(x1) dx1> </ fa(x2) p2(x2) dxz) ]E[a—i—Z] _ E[a]—iE[b]

= E[A(X1)] E[R(X2)] where V]a] = E[(a—E[a])z] = E[a%] — (E[a])?

and in particular

CovXa, Xl = E[ (X~ EXi) (% — EDG])]
= E[Xi —E[Xi]] E[X; -E[Xy]] =
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Elementary Manipulations Antithetic variables
In addition, The simple estimator for E[f(X)] from the last lecture has the form
V[a+b] = Vl]a] + 2 Cov]a, b] + V[b] B 0
where Covla, b] = E [ (2 — Ela]) (b — E[b])] " Z i
. where X() is the i*h independent sample of the random variable X.
ince

|Covla, b]| < +/VI[a] V[b] If X has a symmetric probability distribution, —X is just as likely.
it follows that Antithetic estimator replaces f(X()) by

Vi]a+b] < ( V(a] + V[b) 70 =1 (f(x(")) + f(_x(i))>

— /V[a+b] < +/V[a]+/V[b] Clearly still unbiased since

If a, b are independent then V[a+b] = V[a] + V[b], and more generally the E[f] =3 <E[f(X)] + E[f(_X)]) = E[f(X)]

variance of a sum of independents is equal to the sum of their variances.
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Antithetic variables
The variance is given by

Control Variates

VIl = 3 (VIFX)] + 2 CovIF(X), F(=X)] + VIF(=X)])

- 1 (V[f(X)] + Cov[f(X) f(_X)]) Suppose we want to estimate E[f(X)], and there is another function
2 ’ .
g(X) for which we know E[g(X)].
The variance is always reduced, but the cost is almost doubled, so net

benefit only if Cov[f(X), f(—X)] <O. We can use this by defining a new estimator

Two extremes: f=f-X(g-E[g])
@ A linear payoff, f = a+ b X, is integrated exactly since f=a and
Cov[f(X), f(=X)] = —VI[f]

@ A symmetric payoff f(X) = f(—X) is the worst case since
Cov[f(X), f(—X)] = V[f]

Again unbiased since E[?] = E[f] = E[f]

General assessment — usually not very helpful, but can be good in
particular cases where the payoff is nearly linear
May 30-31, 2013
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Control Variates Control Variates
For a single sample,
V[f —X(g—Elg])] = V[f-Ag] _ o
= V[f] - 2\ Cov[f,g] + )2 Vig] The resulting variance is
f 2
N~ V[f] (1 - w> = N1V (1 - p?)
For an average of N samples, [F1V]el
_ 1 ) where —1 < p < 1 is the correlation between f and g.
V[F — A(Z~Elgl)] = N* (VIf] - 2X CovIf, g] + X* V[g])
The challenge is to choose a good g which is well correlated with f.
To minimise this, the optimum value for X is The covariance, and hence the optimal A, can be estimated numerically.
N Cov|f, g]
Vig]
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