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Lecture outline

Lecture 3:

weak and strong convergence

mean square error decomposition

a PDE example

multilevel Monte Carlo

an SPDE example
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Weak convergence

So far, we have assumed that given a random input X we are able to
exactly compute the random output f (X ).

However, we often have to introduce an approximation f̂ (X ),
with f̂ (X ) → f (X ) as h → 0, where h represents some numerical
discretisation parameter, such as the timestep or grid spacing.

We then have two notions of convergence.

For most applications, what matters is the weak order of convergence,
defined by the error in the expected value. The weak order is m if

E [f ]− E[f̂ ] = O(hm)

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 3 / 32

Strong convergence

In other applications, what matters is the strong order of convergence,
defined by the average difference in approximating each sample.

The strong error is defined in terms of an intermediate quantity S (usually
the solution of an SDE or SPDE) and its numerical approximation Ŝ .

The strong order is m if

(
E
[
(S−Ŝ )2

])1/2

= O(hm)

or

E
[
|S−Ŝ |

]
= O(hm)

If f (S) is Lipschitz, the weak order of convergence can be higher than the
strong order, because positive and negative errors S−Ŝ cancel out.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 4 / 32



Mean Square Error

We have two kinds of errors: Monte Carlo sampling error and
approximation errors.

This then leads to a question: is it better to increase the number of
samples, or to improve the accuracy of the samples

If the true value is V = E[f ]

and the discrete approximation is V̂ = E[f̂ ]

and the Monte Carlo estimate is Ŷ =
1

N

N∑

n=1

f̂ (n)

then . . .
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Mean Square Error

. . . the Mean Square Error is

E
[(

Ŷ − V
)2

]
= E

[(
Ŷ −E[f̂ ] + E[f̂ ]−E[f ]

)2
]

= E
[
(Ŷ −E[f̂ ])2

]
+ (E[f̂ ]−E[f ])2

= N−1V[f̂ ] +
(
E[f̂ ]−E[f ]

)2

first term is due to the variance of estimator

second term is square of bias due to weak error
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Mean Square Error

Suppose the weak error is proportional to hα, and the computational cost
is proportional to C = N h−γ. Then the MSE is approximately

a N−1 + b h2α = a C−1h−γ + b h2α

For a fixed computational cost, this is a minimum when

γ a C−1h−γ = 2α b h2α

and the two error terms have a similar magnitude.

To achieve a RMS error of ε requires h = O(ε1/α) and N = O(ε−2),
so the total cost is O(ε−2−γ/α).
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PDE example

Consider Application 2 from Lecture 1, in which the trampoline
displacement is defined by

T

(
∂2Z

∂x2
+

∂2Z

∂y2

)
= L(x , y), 0<x<1, 0<y<1

with uncertainty in the boundary conditions.

If we use a second order finite element approximation with grid spacing h,
then Z − Ẑ = O(h2), and the cost is O(h−2), assuming a perfect
multigrid solver.

If the output f (Z ) is Lipschitz, then the weak error will also be O(h2),
so we have α=2 and γ=2, and hence the total cost to achieve a RMS
accuracy of ε is O(ε−3).
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Multilevel Monte Carlo

Monte Carlo was considered impractical for PDE and SPDE applications
— a single 3D calculation is expensive, so 105 calculations is too costly.

This perspective has changed completely due to the introduction of
Multilevel Monte Carlo by Stefan Heinrich and myself.

Multilevel Monte Carlo uses a similar idea to multigrid, combining
simulations with different levels of resolution — same accuracy as finest
calculations, but at a much lower computational cost.

Can also be viewed as a recursive control variate strategy.
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Multilevel MC Approach

Consider multiple sets of simulations with different timesteps / grid
spacing hℓ = 2−ℓ, ℓ = 0, 1, . . . , L, and output f̂ℓ

E[f̂L] = E[f̂0] +
L∑

ℓ=1

E[f̂ℓ− f̂ℓ−1]

Expected value is same – aim is to reduce variance of estimator for a fixed
computational cost.

Key point: approximate E[f̂ℓ− f̂ℓ−1] using Nℓ simulations with f̂ℓ and f̂ℓ−1

obtained using same random inputs (e.g. same boundary conditions in
Application 2).

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
f̂
(i)
ℓ − f̂

(i)
ℓ−1

)
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Multilevel MC Approach

Using independent samples at each level, the variance of the combined
estimator is

V

[
L∑

ℓ=0

Ŷℓ

]
=

L∑

ℓ=0

N−1
ℓ Vℓ, Vℓ ≡ V[f̂ℓ− f̂ℓ−1],

and the computational cost is proportional to
L∑

ℓ=0

Nℓ h
−γ
ℓ .

Hence, the variance is minimised for a fixed computational cost by

choosing Nℓ to be proportional to V
1/2
ℓ h

γ/2
ℓ .

The constant of proportionality can be chosen so that the combined
variance is O(ε2).
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General MLMC Theorem

Theorem: Let f be an output functional of the solution of an SDE or
SPDE, and f̂ℓ the discrete approximation using hℓ = M−ℓ.

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[f̂ℓ−f ]

∣∣∣ ≤ c1 h
α
ℓ

ii) E[Ŷℓ] =





E[f̂0], ℓ = 0

E[f̂ℓ− f̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ hβℓ

iv) E[Cℓ] ≤ c3 h
−γ
ℓ
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General MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =
L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E
[(

Ŷ − E[f ]
)2

]
< ε2

with a total computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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Discussion

If β > γ, the cost is O(ε−2):

Monte Carlo requires O(ε−2) samples to get a RMS error of ε

average cost per sample is O(1)

can’t do any better without going to Quasi-Monte Carlo

When β < γ, the cost is O(ε−2−(γ−β)/α):

cost of one calculation on the finest level is O(ε−γ/α)

MLMC is equivalent to O(ε−2+β/α) calcs on finest level

if β = 2α, that’s O(1) calcs on finest level — can’t do any better
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Discussion

In the case of Application 2, we have

Z − Ẑ = O(h2) =⇒ Ẑℓ − Ẑℓ−1 = O(h2ℓ )

so
V[f̂ℓ − f̂ℓ−1] ≤ E[(f̂ℓ − f̂ℓ−1)

2] = O(h4ℓ )

Hence we have α=2, β=4.

A perfect multigrid solver gives γ=2, so overall cost for RMS accuracy ε
is O(ε−2), while single sample deterministic cost is O(ε−1).

A less perfect direct solver gives γ = 4, so cost is O(ε−2(log ε)2)
compared to O(ε−2) for single sample.

This is why MLMC has really made the Monte Carlo approach practical
for uncertainty quantification with PDEs.
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Multilevel Algorithm

Asymptotically,
E[f̂L− f̂L−1] ≈ (M−1)E[f − f̂L]

so this can be used to decide when the bias error is sufficiently small. In
case the correction changes sign at some level, it is safer to use

max
{
M−1

∣∣∣ŶL−1

∣∣∣ ,
∣∣∣ŶL

∣∣∣
}
< (M−1)

ε√
2
.

1 start with L=0

2 estimate VL using some initial samples

3 define optimal Nℓ, ℓ = 0, . . . , L

4 evaluate extra samples as needed for new Nℓ

5 if L≥2, test for convergence

6 if L<2 or not converged, set L := L+1 and go to 2.
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Elliptic SPDE

I’m working with Rob Scheichl (Bath) and Andrew Cliffe (Nottingham)
on multilevel Monte Carlo for the modelling of oil reservoirs and
groundwater contamination in nuclear waste repositories.

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain, and log κ(x) is often modelled as
being Normally distributed with a spatial covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)
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Elliptic SPDE

A typical realisation of κ for λ = 0.001, σ = 1.
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =
∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the correlation function:

∫
R(x, y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.

(Latest 2D/3D work uses an efficient FFT construction based on a
circulant embedding.)
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Elliptic SPDE
Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos approach, but
it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform grid – for rough
coefficients we need to make grid spacing very small on finest grid

each level of refinement has twice as many grid points in each
direction

current numerical experiments use a direct solver for simplicity,
but in 3D will use an efficient AMG multigrid solver with a cost
roughly proportional to the total number of grid points
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2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost taken to be proportional to number of nodes
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2D Results
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V[f̂ℓ− f̂ℓ−1] ∼ h2ℓ E[f̂ℓ− f̂ℓ−1] ∼ h2ℓ
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2D Results
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Complexity analysis

Relating things back to the MLMC theorem:

E[f̂ℓ−f ] ∼ 2−2ℓ =⇒ α = 2

Vℓ ∼ 2−2ℓ =⇒ β = 2

Cℓ ∼ 2dℓ =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing h ∼ ε1/2

and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5
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Other SPDE applications

For more on multilevel for SPDEs, see the work of Christoph Schwab and
his group (ETH Zurich):

http://www.math.ethz.ch/∼schwab/

elliptic, parabolic and hyperbolic PDEs

stochastic coefficients, initial data, boundary data

Schwab used to work on alternative techniques such as “polynomial chaos”
but has now largely switched to MLMC because of its superior efficiency
for many applications.

For other papers, see my MLMC community homepage:

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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Extension to multiple outputs

Suppose we have M outputs and want

L∑

ℓ=0

N−1
ℓ Vℓ,m ≤ 1

2 ε
2
m, m = 1, . . . ,M,

where Vℓ,m is the variance of the multilevel correction for output m, and
εm is the desired RMS accuracy for that output.

As usual the computational cost is
L∑

ℓ=0

Nℓ Cℓ, and we can then do a

constrained optimisation using M Lagrange multipliers.

However, this is a bit nasty – it’s not clear how many of the Lagrange
multipliers will be “active”
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Extension to multiple outputs

A simpler approach is to define

Vℓ = max
m

Vℓ,m

ε2m

and make the variance constraint

L∑

ℓ=0

N−1
ℓ Vℓ ≤ 1

2 .

This brings it back to a problem with a single Lagrange multiplier
with the same optimal solution as before.

Klaus Ritter and Tigran Nagapetyan (Kaiserslautern) are using this
to estimate the CDF (cumulative distribution function) of an exit
time τ . We estimate the CDF at a set of exit times τk , and then
use a cubic spline to approximate the full CDF.
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels
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Non-geometric multilevel
At MIT, Nyugen is starting to look at an application based on reduced
order modelling in which a solution can be expressed as a sum over a
number of modes:

u =
M∑

m=1

am um

Here the um are fixed, and the amplitudes am are calculated by solving a
reduced order problem which depends on some stochastic inputs.

Increasing M increases the accuracy, but also increases the cost.

MLMC may be very effective, but it’s not at all clear how to choose the
levels. Geometric might be OK:

Mℓ = {1, 2, 4, 8, 16}
but perhaps linear would be better?

Mℓ = {2, 4, 6, 8, 10, 12}
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Final words

multilevel Monte Carlo has made the Monte Carlo approach viable
for engineering applications which require the solution of PDEs

the implementation is often very straightforward, using the same
stochastic inputs for simulations on two levels of refinement

it is particularly effective for applications with strong nonlinearity and
high stochastic dimensionality, where the alternative methods are not
appropriate

MATLAB code and test examples are available from
http://people.maths.ox.ac.uk/gilesm/mc2013/

– see the last part of lecture 4 for useful information on the code
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