Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

ERCOFTAC course on Mathematical Methods and Tools in Uncertainty Management and Quantification

October 25, 2013

Lecture outline

Lecture 1: Introduction and Monte Carlo basics

- some model applications
- random number generation
- Monte Carlo estimation
- Central Limit Theorem and confidence interval

Lecture 2: Variance reduction

- basic manipulations
- control variate
- importance sampling
- stratified sampling
- Latin Hypercube
- randomised quasi-Monte Carlo

				· 日 · · · · · · · · · · · · · · · · · ·		
Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013 1 / 28	Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013	2 / 28

Lecture outline

Application 1

Consider a bridge with 7 elements and pinned joints:

- weak and strong convergence
- mean square error decomposition
- multilevel Monte Carlo
- PDEs with uncertainty

Design will compute a force balance, work out compression / extension of each element, and therefore determine the natural length to be cast.

However, the manufactured elements will vary from design in both length and extensibility -14 uncertain inputs.

If two supporting joints have fixed position, then analysis has 6 unknowns (coordinates of free joints) and 6 equations (force balance at free joints).

- 22

▲□▼ ▲ □▼ ▲ □▼

Application 1

Given manufacturing data on the variability of the natural length and extensibility, what might we want to know?

- RMS deviation of joint position from design
- RMS deviation of forces from design
- probability of maximum compression / extension force being outside some specified range

Note: if we turn this into a full finite element analysis, then the computational cost becomes much larger.

Application 2

Consider a square trampoline, with vertical position given by

$$T\left(\frac{\partial^2 Z}{\partial x^2} + \frac{\partial^2 Z}{\partial y^2}\right) = L(x, y), \quad 0 < x < 1, \ 0 < y < 1$$

where T is the tension and L(x, y) is the applied load.

Here the uncertainty could be in the boundary conditions:

- simplest case would be uncertainty in the 4 corner values of Z(x, y) with straight line interpolation along each edge
- a more complicated case might add a Fourier decomposition of the perturbation from the straight line interpolation

$$Z(x,0) = (1-x) Z_{0,0} + x Z_{1,0} + \sum_{n=1}^{\infty} a_n \sin(n\pi x)$$

Could also have uncertainty in the tension and the loading.

	< ۵	コト 4 聞 ト 4 直 ト 4 直 ト う の (の		< ۵	마이 소리에 이 소문이 소문이 있는 돈.	うくで
Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013 5 / 28	Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013	6 / 28

Application 2

Again there are various outputs we might be interested in:

- average values for min Z(x, y) and max Z(x, y)
- RMS varation in these due to uncertainty

Note: biggest displacements likely to occur in the middle, not significantly affected by high order Fourier perturbations on the boundary.

Application 3

In modelling groundwater flow in nuclear waste repositories, or oil flow in oil reservoirs, we use Darcy's Law:

$$abla \cdot \left(\kappa
abla p
ight) = 0$$

where p is the pressure and κ is the permeability of the rock.

The uncertainty here is in $\kappa(x)$ – typically might know the values at a few bore holes, but there is a large amount of uncertainty elsewhere.

We do know that if two points x_1, x_2 are close, then $\kappa(x_1) \approx \kappa(x_2)$, but if they are far apart then they can be quite different. Hence, often model log κ as having a Normal distribution, with a spatial covariance of the form

$$\operatorname{cov}(\log \kappa(x_1), \log \kappa(x_2)) = \sigma^2 \exp(-\|x_1 - x_2\|/\lambda)$$

where λ is the correlation length.

		→ <团→ < 코→ < 코→ < 코	୬ ୯ ୯			(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	1	500
Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013	7 / 28	Mike Giles (Oxford)	Monte Carlo methods	October 25, 20	13	8 / 28

Application 3

What does this application require?

- generation of samples of the stochastic field $\log \kappa(x)$ with correct distribution
- computation of p(x) by solving Darcy PDE
- evaluation of outputs of interest (e.g. water or oil flux across some boundary)
- Monte Carlo simulation to obtain average value, RMS variation, probability of exceeding some threshold, etc.

Random Number Generation

Monte Carlo simulation starts with random number generation, usually split into 2 stages:

- generation of independent uniform (0, 1) random variables
- conversion into random variables with a particular distribution (e.g. Normal)

Very important: never write your own generator, always use a well validated generator from a reputable source

- Matlab
- NAG
- Intel MKI
- AMD ACML

Uniform Random Variables

Pseudo-random number generators use a deterministic (i.e. repeatable) algorithm to generate a sequence of (apparently) random numbers on (0,1) interval.

What defines a good generator?

- a long period how long it takes before the sequence repeats itself 2^{32} is not enough – need at least 2^{40}
- various statistical tests to measure "randomness" well validated software will have gone through these checks
- trivially-parallel Monte Carlo simulation on a compute cluster requires the ability to "skip-ahead" to an arbitrary starting point in the sequence

first computer gets first 10⁶ numbers second computer gets second 10⁶ numbers, etc

Uniform Random Variables

For information see

- Intel MKL information www.intel.com/cd/software/products/asmo-na/eng/266864.htm
- NAG library information www.nag.co.uk/numeric/CL/nagdoc_cl08/pdf/G05/g05_conts.pdf
- Matlab information www.mathworks.com/moler/random.pdf
- Wikipedia information

en.wikipedia.org/wiki/Random_number_generation en.wikipedia.org/wiki/List_of_random_number_generators en.wikipedia.org/wiki/Mersenne_Twister

Mike Giles (Oxford)

Monte Carlo methods

October 25, 2013 11 / 28

1

イロト イポト イヨト イヨト

Mike Giles (Oxford)

200

Normal Random Variables

N(0,1) Normal random variables (mean 0, variance 1) have the probability distribution

$$p(x) = \phi(x) \equiv \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$$

The Box-Muller method takes two independent uniform (0, 1) random numbers y_1, y_2 , and defines

$$\begin{array}{rcl} x_1 & = & \sqrt{-2\log(y_1)} \, \cos(2\pi y_2) \\ x_2 & = & \sqrt{-2\log(y_1)} \, \sin(2\pi y_2) \end{array}$$

It can be proved that x_1 and x_2 are N(0,1) random variables, and independent:

$$p_{\text{joint}}(x_1, x_2) = p(x_1) p(x_2)$$

Inverse CDF

A more flexible alternative uses the cumulative distribution function CDF(x) for a random variable X, defined as

$$CDF(x) = \mathbb{P}(X < x)$$

If Y is a uniform (0,1) random variable, then can define X by

$$X = CDF^{-1}(Y).$$

For N(0,1) Normal random variables,

$$CDF(x) = \Phi(x) \equiv \int_{-\infty}^{x} \phi(s) ds = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2}s^{2}\right) ds$$

 $\Phi^{-1}(y)$ is approximated in software in a very similar way to the implementation of cos, sin, log.

1

My GPU CUDA code for inverse error function erfinv

Mike Giles (Oxford)

-2

0

х

2

0

-4

Monte Carlo methods

Δ

-4

0

October 25, 2013 15 / 28

0.5

х

Monte Carlo methods

2

< 17 ▶

Normal Random Variables

The Normal CDF $\Phi(x)$ is related to the error function $\operatorname{erf}(x)$ through

$$\Phi(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}(x/\sqrt{2}) \implies \Phi^{-1}(y) = \sqrt{2} \operatorname{erf}^{-1}(2y-1)$$

This is the function I use in Matlab:

```
% x = ncfinv(y)
%
% inverse Normal CDF
function x = ncfinv(y)
x = sqrt(2)*erfinv(2*y-1);
```

Correlated Normal Random Variables

We often need a vector y of Normally distributed variables with a prescribed covariance matrix, so that $\mathbb{E}[y y^T] = \Sigma$.

Suppose x is a vector of independent N(0, 1) variables, and define y = Lx. Each element of y is Normally distributed, $\mathbb{E}[y] = L\mathbb{E}[x] = 0$, and

$$\mathbb{E}[y \, y^{\,T}] = \mathbb{E}[L \times x^{\,T} L^{\,T}] = L \, \mathbb{E}[x \, x^{\,T}] \, L^{\,T} = L \, L^{\,T}$$

since $\mathbb{E}[x x^T] = I$ because

- elements of x are independent $\Longrightarrow \mathbb{E}[x_i x_j] = 0$ for $i \neq j$
- elements of x have unit variance $\Longrightarrow \mathbb{E}[x_i^2] = 1$

Hence choose *L* so that $LL^T = \Sigma$. One choice is a Cholesky factorisation in which *L* is lower-triangular. Another is PCA in which $L = U \Lambda^{1/2}$ with *U* the matrix of eigenvectors of Σ , and Λ the diagonal eigenvalue matrix.

Expectation and Integration

If X is a random variable uniformly distributed on [0, 1] then the expectation of a function f(X) is equal to its integral:

$$\overline{f} = \mathbb{E}[f(X)] = I[f] = \int_0^1 f(x) \,\mathrm{d}x.$$

The generalisation to a *d*-dimensional "cube" $I^d = [0, 1]^d$, is

$$\overline{f} = \mathbb{E}[f(X)] = I[f] = \int_{I^d} f(x) \,\mathrm{d}x.$$

Thus the problem of finding expectations is directly connected to the problem of numerical quadrature (integration), often in very large dimensions.

Expectation and Integration

Suppose we have a sequence $X^{(n)}$ of independent samples from the uniform distribution.

An approximation to the expectation/integral is given by

$$I_N[f] = N^{-1} \sum_{n=1}^N f(x^{(n)}).$$

Two key features:

• Unbiased: $\mathbb{E}\left[I_N[f]\right] = I[f]$ • Convergent: $\lim_{N \to \infty} I_N[f] = I[f]$

< 47 ►

Central Limit Theorem

In general, define

- error $\varepsilon_N(f) = I[f] I_N[f]$
- bias = $\mathbb{E}[\varepsilon_N(f)]$
- RMSE, "root-mean-square-error" = $\sqrt{\mathbb{E}[(\varepsilon_N(f))^2]}$

The Central Limit Theorem proves (roughly speaking) that for large N

$$\varepsilon_N(f) \sim \sigma N^{-1/2} Z$$

with Z a N(0,1) random variable and σ^2 the variance of f:

$$\sigma^2 = \mathbb{E}[(f - \overline{f})^2] = \int_{I^d} (f(x) - \overline{f})^2 \, \mathrm{d}x.$$

Central Limit Theorem

More precisely, provided σ is finite, then as $N \longrightarrow \infty$,

$$\mathsf{CDF}(N^{1/2}\sigma^{-1}\varepsilon_N)\longrightarrow \mathsf{CDF}(Z)$$

 $\mathbb{P}\left[N^{1/2}\sigma^{-1}\varepsilon_N < s\right] \longrightarrow \mathbb{P}\left[Z < s\right] = \Phi(s)$

so that

and

$$\mathbb{P}\left[\left|N^{1/2}\sigma^{-1}\varepsilon_{N}\right| > s\right] \longrightarrow \mathbb{P}\left[|Z| > s\right] = 2 \Phi(-s)$$
$$\mathbb{P}\left[\left|N^{1/2}\sigma^{-1}\varepsilon_{N}\right| < s\right] \longrightarrow \mathbb{P}\left[|Z| < s\right] = 1 - 2 \Phi(-s)$$

《曰》 《國》 《臣》 《臣》 三臣 Mike Giles (Oxford) Monte Carlo methods Mike Giles (Oxford) Monte Carlo methods October 25. 2013 21 / 28 October 25, 2013

Central Limit Theorem

Given N samples, the empirical variance is

$$\widetilde{\sigma}^2 = N^{-1} \sum_{n=1}^{N} \left(f(x^{(n)}) - I_N \right)^2 = I_N^{(2)} - (I_N)^2$$

where

$$I_N = N^{-1} \sum_{n=1}^N f(x^{(n)}), \qquad I_N^{(2)} = N^{-1} \sum_{n=1}^N \left(f(x^{(n)}) \right)^2$$

 $\tilde{\sigma}^2$ is a slightly biased estimator for σ^2 ; an unbiased estimator is

$$\widehat{\sigma}^2 = (N-1)^{-1} \sum_{n=1}^{N} \left(f(x^{(n)}) - I_N \right)^2 = \frac{N}{N-1} \left(I_N^{(2)} - (I_N)^2 \right)$$

Central Limit Theorem

How many samples do we need for an accuracy of $\overline{\varepsilon}$ with probability *c*?

Since

$$\mathbb{P}\left[N^{1/2}\sigma^{-1}|\varepsilon| < s
ight] pprox 1-2 \Phi(-s),$$

define s so that $1 - 2 \Phi(-s) = c$

С	0.683	0.9545	0.9973	0.99994
S	1.0	2.0	3.0	4.0

Then $|\varepsilon| < N^{-1/2} \sigma s$ with probability c, so to get $|\varepsilon| < \overline{\varepsilon}$ we can put

$$N^{-1/2} \widehat{\sigma} s(c) = \overline{\varepsilon} \implies N = \left(\frac{\widehat{\sigma} s(c)}{\overline{\varepsilon}}\right)^2.$$

Note: twice as much accuracy requires 4 times as many samples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Expectation and Integration

How does Monte Carlo integration compare to grid based methods for d-dimensional integration?

MC error is proportional to $N^{-1/2}$ independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with $M = N^{1/d}$ points in each direction has

Error
$$\propto M^{-2} = N^{-2/d}$$

This scales better than MC for d < 4, but worse for d > 4. i.e. MC is better at handling high dimensional problems.

Other outputs

Using Monte Carlo we can compute more than just simple averages.

First of all, can compute quantities like the standard deviation:

$$\sigma_f^2 = \mathbb{E}\left[(f - \mathbb{E}[f])^2\right]$$

and other higher moments.

	< 日 > < 图 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >			・ロト ・西ト ・西ト ・ ほ・ うくの			
Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013	25 / 28	Mike Giles (Oxford)	Monte Carlo methods	October 25, 2013	26 / 28
Other extended				Commence for			

Other outputs

We can also approximate the cumulative distribution function

$$C(s) = \mathbb{P}[f(X) < s] = \mathbb{E}[\mathbf{1}_{f(X) < s}]$$

or the probability density function, $P(s) = \frac{\mathrm{d}C}{\mathrm{d}s}$, in various ways:

- Maximum Entropy reconstruction uses E[f^m] for m = 1, 2, ..., M to construct PDF approximation P(s) ≈ exp(p(s)), where p(s) is a polynomial and P(s) has the same moments
- Alternatively, can evaluate C(s_j) for a set of values s_j, and then interpolate to approximate the full C(s)

Summary so far

- Monte Carlo quadrature is straightforward and robust
- confidence bounds can be obtained as part of the calculation
- ${\ensuremath{\, \circ }}$ can calculate the number of samples N needed for chosen accuracy
- much more efficient than grid-based methods for high dimensions

• accuracy =
$$O(N^{-1/2})$$
, CPU time = $O(N)$

$$\implies$$
 accuracy = $O(CPU time^{-1/2})$

$$\implies$$
 CPU time = $O(\text{accuracy}^{-2})$

• the key now is to reduce number of samples required by reducing the variance

October 25, 2013 27 / 28

Mike Giles (Oxford)

Monte Carlo methods

-