
Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

ERCOFTAC course on Mathematical Methods and Tools
in Uncertainty Management and Quantification

October 25, 2013

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 1 / 28

Lecture outline

Lecture 1: Introduction and Monte Carlo basics

some model applications

random number generation

Monte Carlo estimation

Central Limit Theorem and confidence interval

Lecture 2: Variance reduction

basic manipulations

control variate

importance sampling

stratified sampling

Latin Hypercube

randomised quasi-Monte Carlo

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 2 / 28

Lecture outline

Lecture 3: multilevel Monte Carlo and applications

weak and strong convergence

mean square error decomposition

multilevel Monte Carlo

PDEs with uncertainty

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 3 / 28

Application 1

Consider a bridge with 7 elements and pinned joints:

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅�

�
�
�
�
�

❡ ❡ ❡

❡ ❡

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

Design will compute a force balance, work out compression / extension
of each element, and therefore determine the natural length to be cast.

However, the manufactured elements will vary from design in both length
and extensibility – 14 uncertain inputs.

If two supporting joints have fixed position, then analysis has 6 unknowns
(coordinates of free joints) and 6 equations (force balance at free joints).

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 4 / 28

Application 1

Given manufacturing data on the variability of the natural length and
extensibility, what might we want to know?

RMS deviation of joint position from design

RMS deviation of forces from design

probability of maximum compression / extension force being
outside some specified range

Note: if we turn this into a full finite element analysis, then the
computational cost becomes much larger.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 5 / 28

Application 2

Consider a square trampoline, with vertical position given by

T

(
∂2Z

∂x2
+

∂2Z

∂y2

)
= L(x , y), 0<x<1, 0<y<1

where T is the tension and L(x , y) is the applied load.

Here the uncertainty could be in the boundary conditions:

simplest case would be uncertainty in the 4 corner values of Z (x , y)
with straight line interpolation along each edge

a more complicated case might add a Fourier decomposition
of the perturbation from the straight line interpolation

Z (x , 0) = (1−x)Z0,0 + x Z1,0 +
∞∑

n=1

an sin(nπx)

Could also have uncertainty in the tension and the loading.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 6 / 28

Application 2

Again there are various outputs we might be interested in:

average values for minZ (x , y) and maxZ (x , y)

RMS varation in these due to uncertainty

Note: biggest displacements likely to occur in the middle, not significantly
affected by high order Fourier perturbations on the boundary.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 7 / 28

Application 3

In modelling groundwater flow in nuclear waste repositories, or oil flow in
oil reservoirs, we use Darcy’s Law:

∇·
(
κ∇p

)
= 0

where p is the pressure and κ is the permeability of the rock.

The uncertainty here is in κ(x) – typically might know the values at a few
bore holes, but there is a large amount of uncertainty elsewhere.

We do know that if two points x1, x2 are close, then κ(x1) ≈ κ(x2), but if
they are far apart then they can be quite different. Hence, often model
log κ as having a Normal distribution, with a spatial covariance of the form

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)

where λ is the correlation length.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 8 / 28

Application 3

What does this application require?

generation of samples of the stochastic field log κ(x) with correct
distribution

computation of p(x) by solving Darcy PDE

evaluation of outputs of interest (e.g. water or oil flux across some
boundary)

Monte Carlo simulation to obtain average value, RMS variation,
probability of exceeding some threshold, etc.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 9 / 28

Random Number Generation

Monte Carlo simulation starts with random number generation,
usually split into 2 stages:

generation of independent uniform (0, 1) random variables

conversion into random variables with a particular distribution
(e.g. Normal)

Very important: never write your own generator, always use a well
validated generator from a reputable source

Matlab

NAG

Intel MKL

AMD ACML

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 10 / 28

Uniform Random Variables

Pseudo-random number generators use a deterministic (i.e. repeatable)
algorithm to generate a sequence of (apparently) random numbers on
(0, 1) interval.

What defines a good generator?

a long period – how long it takes before the sequence repeats itself
232 is not enough – need at least 240

various statistical tests to measure “randomness”
well validated software will have gone through these checks

trivially-parallel Monte Carlo simulation on a compute cluster
requires the ability to “skip-ahead” to an arbitrary starting point
in the sequence

first computer gets first 106 numbers
second computer gets second 106 numbers, etc

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 11 / 28

Uniform Random Variables

For information see

Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

NAG library information
www.nag.co.uk/numeric/CL/nagdoc cl08/pdf/G05/g05 conts.pdf

Matlab information
www.mathworks.com/moler/random.pdf

Wikipedia information
en.wikipedia.org/wiki/Random number generation

en.wikipedia.org/wiki/List of random number generators

en.wikipedia.org/wiki/Mersenne Twister

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 12 / 28

Normal Random Variables

N(0, 1) Normal random variables (mean 0, variance 1) have the
probability distribution

p(x) = φ(x) ≡ 1√
2π

exp(− 1
2x

2)

The Box-Muller method takes two independent uniform (0, 1) random
numbers y1, y2, and defines

x1 =
√

−2 log(y1) cos(2πy2)

x2 =
√

−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random variables, and
independent:

pjoint(x1, x2) = p(x1) p(x2)

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 13 / 28

Inverse CDF

A more flexible alternative uses the cumulative distribution function
CDF (x) for a random variable X , defined as

CDF (x) = P(X < x)

If Y is a uniform (0, 1) random variable, then can define X by

X = CDF−1(Y).

For N(0, 1) Normal random variables,

CDF (x) = Φ(x) ≡
∫ x

−∞
φ(s) ds =

1√
2π

∫ x

−∞
exp

(
− 1

2s
2
)
ds

Φ−1(y) is approximated in software in a very similar way to the
implementation of cos, sin, log.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 14 / 28

Normal Random Variables

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

Φ
(x

)

0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

x

Φ
−

1 (x
)

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 15 / 28

Normal Random Variables

Some useful weblinks:

en.wikipedia.org/wiki/Normal distribution

Wikipedia definition of Φ matches mine

mathworld.wolfram.com/NormalDistribution.html

mathworld.wolfram.com/DistributionFunction.html

Good Mathworld items, but their definition of Φ is slightly different;
they call the cumulative distribution function D(x).

lib.stat.cmu.edu/apstat/241/

single and double precision code in FORTRAN

http://people.maths.ox.ac.uk/gilesm/erfinv/

My GPU CUDA code for inverse error function erfinv

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 16 / 28

Normal Random Variables

The Normal CDF Φ(x) is related to the error function erf(x) through

Φ(x) = 1
2 + 1

2 erf(x/
√
2) =⇒ Φ−1(y) =

√
2 erf−1(2y−1)

This is the function I use in Matlab:

% x = ncfinv(y)

%

% inverse Normal CDF

function x = ncfinv(y)

x = sqrt(2)*erfinv(2*y-1);

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 17 / 28

Correlated Normal Random Variables

We often need a vector y of Normally distributed variables with a
prescribed covariance matrix, so that E[y yT] = Σ.

Suppose x is a vector of independent N(0, 1) variables, and define y = L x .
Each element of y is Normally distributed, E[y] = LE[x] = 0, and

E[y yT] = E[L x xTLT] = L E[x xT] LT = L LT

since E[x xT] = I because

elements of x are independent =⇒ E[xi xj] = 0 for i 6= j

elements of x have unit variance =⇒ E[x2i] = 1

Hence choose L so that LLT = Σ. One choice is a Cholesky factorisation
in which L is lower-triangular. Another is PCA in which L = U Λ1/2 with
U the matrix of eigenvectors of Σ, and Λ the diagonal eigenvalue matrix.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 18 / 28

Expectation and Integration

If X is a random variable uniformly distributed on [0, 1] then the
expectation of a function f (X) is equal to its integral:

f = E[f (X)] = I [f] =

∫ 1

0
f (x)dx .

The generalisation to a d -dimensional “cube” I d = [0, 1]d , is

f = E[f (X)] = I [f] =

∫

I d
f (x)dx .

Thus the problem of finding expectations is directly connected to the
problem of numerical quadrature (integration), often in very large
dimensions.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 19 / 28

Expectation and Integration

Suppose we have a sequence X (n) of independent samples from the
uniform distribution.

An approximation to the expectation/integral is given by

IN [f] = N−1
N∑

n=1

f (x(n)).

Two key features:

Unbiased: E
[
IN [f]

]
= I [f]

Convergent: lim
N→∞

IN [f] = I [f]

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 20 / 28

Central Limit Theorem

In general, define

error εN(f) = I [f]− IN [f]

bias = E[εN(f)]
RMSE, “root-mean-square-error” =

√
E[(εN(f))2]

The Central Limit Theorem proves (roughly speaking) that for large N

εN(f) ∼ σN−1/2 Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = E[(f − f)2] =

∫

I d

(
f (x)− f

)2
dx .

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 21 / 28

Central Limit Theorem

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN) −→ CDF(Z)

so that
P
[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and
P
[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z | > s] = 2 Φ(−s)

P
[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z | < s] = 1− 2 Φ(−s)

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 22 / 28

Central Limit Theorem

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(
f (x(n))− IN

)2
= I

(2)
N − (IN)

2

where

IN = N−1
N∑

n=1

f (x(n)), I
(2)
N = N−1

N∑

n=1

(
f (x(n))

)2

σ̃2 is a slightly biased estimator for σ2; an unbiased estimator is

σ̂2 = (N−1)−1
N∑

n=1

(
f (x(n))− IN

)2
=

N

N−1

(
I
(2)
N − (IN)

2
)

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 23 / 28

Central Limit Theorem

How many samples do we need for an accuracy of ε with probability c?

Since
P
[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

define s so that 1− 2 Φ(−s) = c

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

Then |ε| < N−1/2 σ s with probability c , so to get |ε| < ε we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many samples.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 24 / 28

Expectation and Integration

How does Monte Carlo integration compare to grid based methods for
d -dimensional integration?

MC error is proportional to N−1/2 independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with
M = N1/d points in each direction has

Error ∝ M−2 = N−2/d

This scales better than MC for d < 4, but worse for d > 4.
i.e. MC is better at handling high dimensional problems.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 25 / 28

Other outputs

Using Monte Carlo we can compute more than just simple averages.

First of all, can compute quantities like the standard deviation:

σ2
f = E

[
(f − E[f])2

]

and other higher moments.

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 26 / 28

Other outputs

We can also approximate the cumulative distribution function

C (s) = P [f (X)<s] = E[1f (X)<s]

or the probability density function, P(s) =
dC

ds
, in various ways:

Maximum Entropy reconstruction – uses E[f m] for m = 1, 2, . . . ,M
to construct PDF approximation P(s) ≈ exp(p(s)), where p(s)
is a polynomial and P(s) has the same moments

Alternatively, can evaluate C (sj) for a set of values sj , and then
interpolate to approximate the full C (s)

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 27 / 28

Summary so far

Monte Carlo quadrature is straightforward and robust

confidence bounds can be obtained as part of the calculation

can calculate the number of samples N needed for chosen accuracy

much more efficient than grid-based methods for high dimensions

accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)

the key now is to reduce number of samples required by reducing the
variance

Mike Giles (Oxford) Monte Carlo methods October 25, 2013 28 / 28

