
Hardware and software trends in computing

Mike Giles

Oxford University Mathematical Institute

Module 6

Nov 29, 2017

Mike Giles (Oxford) Computing trends Nov 29, 2017 1 / 38

Outline

Hardware:

money + economics

Moore’s Law

parallelism + vector processing

Software:

OpenMP parallelism

OpenMP vectorisation

Mike Giles (Oxford) Computing trends Nov 29, 2017 2 / 38

Money and economics

Money and economics drive the computing industry – technology is just
the way things get done!

Money: if there’s a big enough market demand, someone will develop the
technology / product.

Economics: designing a new chip is very expensive ($1bn?) so it’s really
important to minimise unit cost by producing lots of the same item.

A new fabrication plant is even more expensive (multi-$bn’s) so
there are now only 4 big fab companies doing the manufacturing:
Intel, Samsung, TSMC, GlobalFoundries (ex-AMD + ex-IBM).

Mike Giles (Oxford) Computing trends Nov 29, 2017 3 / 38

Computing markets

The computing market has several distinct categories:

hyperscale servers (100k+ for Google, Amazon, Microsoft, Facebook,
eBay, Baidu, Alibaba, TenCent) – historically dominated by Intel, but
under threat from NVIDIA and perhaps ARM

servers (10–20k) – historically dominated by Intel, but under threat
from NVIDIA and perhaps ARM

desktop (classic PC) – dominated by Intel

mobile (phones + devices + cars?) – dominated by ARM,
Qualcomm, Apple, Samsung but Intel and NVIDIA entering

embedded (IoT) – dominated by ARM, Qualcomm

Mike Giles (Oxford) Computing trends Nov 29, 2017 4 / 38

Big market forces

AI / Deep Learning / Machine Learning applied to everything

– this has two sides to it (training and execution) with slightly
different needs

Computing into everything – Internet of Things (IoT)

Big focus on energy efficiency

Mike Giles (Oxford) Computing trends Nov 29, 2017 5 / 38

Some market numbers

Intel: stock up 30% in the past 3 years (mostly in last 2 months),
market cap is now $210bn

NVIDIA: stock up by factor 10 in 3 years, market cap is now $130bn

Broadcom: stock up by 100% in the past 1.5 years, market cap
$110bn

Qualcomm: stock down 10% in the past 3 years, market cap $95bn

ARM: bought by SoftBank a year ago for $32bn

AMD: stock up by factor 3-4 in 3 years, market cap is now $10bn

Apple: stock up 60% in the past 3 years, market cap now $900bn

Samsung: stock up 100% in the past 3 years, market cap $320bn

IBM: market cap is now $140bn

Mike Giles (Oxford) Computing trends Nov 29, 2017 6 / 38

Mike Giles (Oxford) Computing trends Nov 29, 2017 7 / 38

Top500 supercomputers

Mike Giles (Oxford) Computing trends Nov 29, 2017 8 / 38

Top500 supercomputers

Mike Giles (Oxford) Computing trends Nov 29, 2017 9 / 38

Top500 supercomputers

very impressive growth, 105 ≈ 217 increase in 20 years, doubling
roughly every 15 months

seems to be slowing down in last few years

power consumption of #1 system has also grown hugely:
I 1977, Cray-1, 115kW

I 1985, Cray-2, 150-200kW

I 1993-6, Japanese Numerical Wind Tunnel, 500kW

I 2005, IBM Blue Gene/L, 716kW

I 2014, Tianhe-2, Intel Xeon Phi, 17MW

I 2017, Sunway TaihuLight, 15MW

Mike Giles (Oxford) Computing trends Nov 29, 2017 10 / 38

Mike Giles (Oxford) Computing trends Nov 29, 2017 11 / 38

Increasing parallelism

Chips typically have clock frequencies of 1-3 GHz, but the top GPU
deliver up to 100 TFlops, and many CPUs can deliver over 1 TFlops
– this is all due to parallelism at many levels:

single instruction (addition or multiplication)

instruction pipeline

multiple pipelines (superscalar)

vector units

multiple cores

server with multiple chips/sockets

multiple servers

Mike Giles (Oxford) Computing trends Nov 29, 2017 12 / 38

Vector processing

don’t want lots of chip dedicated to “command & control”
– instead, cores work in small groups, all doing the same
instruction at the same time, but on different data

(similar to old days of vector computing on CRAY supercomputers)

on NVIDIA GPUs, cores work in groups of 32 (a thread warp)

CPUs also have vector units which are getting longer to compete
with GPUs – old Intel Xeons have 256-bit AVX vector units, but
the latest Xeons have 512-bit AVX-512 units (8 doubles or 16 floats),
and each core has up to 2 of these

tricky for algorithms with lots of conditional branching,
but there are various algorithmic tricks that can be used

Mike Giles (Oxford) Computing trends Nov 29, 2017 13 / 38

Data movement

Moving data to/from the main memory often limits execution performance

200-600 cycle delay in fetching data from main memory

many applications are bandwidth-limited, not compute limited

(in double precision, given 200 GFlops and 80 GB/s bandwidth,
needs 20 flops/variable to balance computation and communication)

takes much more energy / time even to move data across a chip
than to perform a floating point operation

often, true cost should be based on how much data is moved,
and this is becoming more and more relevant over time

in some cases, this needs a fundamental re-think about algorithms
and their implementation

Mike Giles (Oxford) Computing trends Nov 29, 2017 14 / 38

Latest GPU

NVIDIA’s V100 GPU:

80 SM (streaming multiprocessor) units running at around 1.5 GHz

each SM has
I 64 = 2 × 32 single precision cores
I 32 double precison cores
I 64 32-bit integer cores
I 8 special reduced-precision tensor cores for machine learning
I 64k 32-bit registers
I up to 96kB shared memory

16 TFlops in single precision / 8 TFlops in double precision

125 TFlops in reduced-precision machine learning application

900 GB/s bandwidth to 16GB HBM2 memory

Mike Giles (Oxford) Computing trends Nov 29, 2017 15 / 38

Latest CPUs

New Intel Xeon Scalable Processors:

up to 28 cores, each with either 1 or 2 AVX-512 vector units

1MB of L2 cache per core, and up to 38.5MB of shared L3 cache

the most expensive costs $13k, more than an NVIDIA V100 GPU

up to 120 GB/s bandwidth to main memory

Xeon Gold 6140:

https://en.wikichip.org/wiki/intel/xeon gold/6140

$2.5k cost

18 cores, each with 2 AVX-512 units

2.3GHz, with single-core boost to 3.7GHz

Mike Giles (Oxford) Computing trends Nov 29, 2017 16 / 38

Latest CPUs

Xeon Gold 6140:

https://en.wikichip.org/wiki/intel/xeon gold/6140

$2.5k cost

18 cores, each with 2 AVX-512 units

2.3GHz, with single-core boost to 3.7GHz

Importance of vectorisation:

without, peak single precision performance is
18 × 4 × 2.3×109 ≈ 165 GFlops

with, peak single precision performance is
18 × 2 × 32 × 2.3×109 ≈ 3 TFlops

Mike Giles (Oxford) Computing trends Nov 29, 2017 17 / 38

Latest CPUs

Xeon Gold 6140 structure: L1 (32kB), L2 (1MB), L3 (1.375MB/core)

AVX AVX AVX AVX AVX AVX

AVX AVX AVX AVX AVX AVX

core core core core core core

L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2

L3 cache

. . .

. . .

. . .

. . .

Mike Giles (Oxford) Computing trends Nov 29, 2017 18 / 38

Operating System Scheduler

Usually, there are many more jobs/tasks/processes running than available
cores/threads, and hence a scheduler is required:

it maintains a list of active processes

in the simplest case, each process is allowed to run for 1ms then
it is put to the back of the queue to wait for its next turn

by default, Ubuntu uses the Completely Fair Scheduler (CFS):
https://en.wikipedia.org/wiki/Completely Fair Scheduler

important consequence: when the process gets its next turn,
it may end up on a different core, so all of its data will have to
be moved over from one L1/L2 cache to another – costly!

alternatively, a process can insist that each of its threads always goes
to the same core (“pinned” threads)

Mike Giles (Oxford) Computing trends Nov 29, 2017 19 / 38

Software
What does a programmer need to know about developing high
performance software?

Given what has been said about the hardware, the software needs to
exploit parallelism, but there are lots of ways in which this can be done:

task parallel: run lots of independent tasks at the same time
– “trivial” but can be very effective

multi-process: a task consists of several processes (on same system
or multiple systems) which exchange information; usually
implemented using MPI – classic HPC

multi-threaded: a process uses multiple threads on a shared-memory
multicore system – usually done using OpenMP or Posix threads

vectorization: each thread exploits the AVX vector capabilities for
maximum performance – can also be done using OpenMP

Mike Giles (Oxford) Computing trends Nov 29, 2017 20 / 38

OpenMP

Strong view: expertise in using OpenMP is essential for a software
developer interested in performance!

simplest way to achieve both multi-threading and vectorization

relatively easy to develop a parallel code

BUT, must understand what is going on to get good performance
(quite easy to get poor performance through “simple” mistakes)

Mike Giles (Oxford) Computing trends Nov 29, 2017 21 / 38

OpenMP

OpenMP is an open standard and most compilers support it:

defined for C/C++ and Fortran (the main HPC languages) it works
mainly through “pragmas” (special comments within the code) and a
header file <omp.h>

there is also a run-time OpenMP library, and at run-time the
OpenMP code checks a variety of environment variables

gcc/g++: enabled by -fopenmp compiler flag
– for environment variables see
https://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html

icc/icpc: enabled by -qopenmp compiler flag
– for environment variables see
https://software.intel.com/en-us/node/522775

and look for OMP * and KMP *

Mike Giles (Oxford) Computing trends Nov 29, 2017 22 / 38

OpenMP

Simple task parallelism within a single process:

#pragma omp parallel

{

// Code inside this region runs in parallel.

printf("Hello! \n");

}

How is the number of threads determined?

function call omp set num threads

environment variable OMP NUM THREADS

system default (often the number of cores)

Mike Giles (Oxford) Computing trends Nov 29, 2017 23 / 38

OpenMP

More details:

each thread can identify itself using function call
omp get thread num, and use this “rank” to decide what to do

each thread will run on a different core, with its own L1/L2 cache

any variables declared within the parallel region will be “private”,
i.e. each thread will only be able to read/write to its own variables

any variables declared before the parallel region will be “shared”,
i.e. all threads can read/write to them – reading is usually not a
problem, but writing can be a major problem if not done carefully

Writing to the same shared variable has unpredictable consequences;
writing to different shared variables may give bad performance if they
share a cache line. Write to private variables as much as possible.

Mike Giles (Oxford) Computing trends Nov 29, 2017 24 / 38

OpenMP

A parallel for loop:

#pragma omp parallel for

for (int i=0; i<1000; i++) {

b[i] = (a[i] + a[i-1]) / 2.0;

}

a, b are shared

i is private by default

if there are 4 threads, then thread 0 will do first 250,
thread 1 next 250, and so on

the compiler will check that this is logically OK, that i=0 can be
done at the same time as i=250 without affecting the final answer

Mike Giles (Oxford) Computing trends Nov 29, 2017 25 / 38

OpenMP

The way in which iterations of a loop are allocated to threads can be
controlled by a “clause”:

#pragma omp parallel for schedule(static)

the default block schedule, good in most cases

#pragma omp parallel for schedule(dynamic)

the “cheese counter” scheduler: each thread does one, then gets a
new one (good for small numbers with highly variable workloads)

#pragma omp parallel for schedule(dynamic,chunk)

similar, each does chunk iterations, then goes back for next chunk

for more information on these and other options see
https://software.intel.com/en-us/articles/openmp-loop-scheduling

Remember that each thread runs on a different core, so the schedule
choice has implications for data movement and performance.

Mike Giles (Oxford) Computing trends Nov 29, 2017 26 / 38

OpenMP
In many applications (e.g. Monte Carlo) we have code like this:

float sum = 0.0f;

for (int i=0; i<1000; i++) {

float x = value_calc(i, ...);

sum += x;

}

A naive use of OpenMP wouldn’t work, because all threads would be
updating the same sum. Instead, we have a special clause to handle it.

float sum = 0.0f;

#pragma omp parallel for reduction(+:sum)

for (int i=0; i<1000; i++) {

float x = value_calc(i, ...);

sum += x;

}

Mike Giles (Oxford) Computing trends Nov 29, 2017 27 / 38

OpenMP

The compiler implementation of this first uses a private sum_local

for each thread, then adds these onto sum once the loop is finished.

Other possible reduction operators include: *, - max, min and various
logical operations.

For more details see:
https://software.intel.com/en-us/node/608161

or
https://computing.llnl.gov/tutorials/openMP/#REDUCTION

Mike Giles (Oxford) Computing trends Nov 29, 2017 28 / 38

OpenMP

So far we have talked about multi-threaded parallelism.

OpenMP 4.0 expanded to include vectorisation (a.k.a. SIMD – Single
Instruction, Multiple Data) although the Intel compiler may automatically
vectorise the innermost loop with compiler flags -O3 or -vec.

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int i=0; i<1000; i++) {

float x = value_calc(i, ...);

sum += x;

}

On AVX-512, with 16 floats per vector, it will do the loop in chunks of 16,
and then cope with the remaining 8 at the end. The reduction is handled
by using a vector of partial sums, then combining them at the end.

Mike Giles (Oxford) Computing trends Nov 29, 2017 29 / 38

OpenMP

In this example, it would generate a vectorised version of the function call
value calc.

Remember: vectorisation is performed at the level of a single thread within
a single core, so this should usually be innermost when there are nested
loops.

Some slides:
https://doc.itc.rwth-aachen.de/download/attachments/28344675/SIMD%20Vectorization%20with%20OpenMP.pdf

https://www.nersc.gov/assets/Training-Materials/NERSC-VectorTrainingOct2014.pdf

Mike Giles (Oxford) Computing trends Nov 29, 2017 30 / 38

OpenMP

Finite difference code example:

#pragma parallel for

for (int j=0; j<J; i++) {

#pragma omp simd

for (int i=0; i<I; i++) {

arr[i + j*I] = ...;

}

}

Very important to order the loops correctly – the elements of arr are
sequential in the i direction, so keeping the i loop innermost means the
data is already contiguous for vectorisation and the different threads for
the j loop are working on quite different parts of the array.

Mike Giles (Oxford) Computing trends Nov 29, 2017 31 / 38

OpenMP

An experimental Monte Carlo test code to investigate OpenMP:
http://people.maths.ox.ac.uk/gilesm/mlmc/c++/par expts/GBM.c

(slightly simplified version shown here)

#include <omp.h>

// vector length for vectorisation

#define VECTOR_LENGTH 8

// each OpenMP thread has its own VSL RNG and storage

double *dW;

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream, dW)

The last line ensures a private random number generator for each thread.

Mike Giles (Oxford) Computing trends Nov 29, 2017 32 / 38

OpenMP

Top level multi-threaded parallelisation:

#pragma omp parallel shared(T,X0,mu,sigma,dt,M,N) \

reduction(+:sum1,sum2)

{

double sum1_t = 0.0, sum2_t = 0.0;

int tid = omp_get_thread_num();

// create RNG, then give each thread a unique skipahead

vslNewStream(&stream, VSL_BRNG_MRG32K3A,1337);

long long skip = ((long long) (tid+1)) << 48;

vslSkipAheadStream(stream,skip);

dW = (double *)malloc(RV_BYTES);

pathcalc(T,X0,mu,sigma,dt, M, N, &sum1_t, &sum2_t);

sum1 += sum1_t;

sum2 += sum2_t;

}

Mike Giles (Oxford) Computing trends Nov 29, 2017 33 / 38

OpenMP
Inside pathcalc

/* loop over paths in increments of VECTOR_LENGTH */

for (int n1=0; n1<N; n1+=VECTOR_LENGTH) {

int offset = n1*M; /* random numbers already used */

/* vectorised path calculation */

#pragma omp simd reduction(+:sum1,sum2)

for (int n2=0; n2<VECTOR_LENGTH; n2++) {

double X = X0;

for (int m=0; m<M; m++) {

double delW = dW[offset+n2];

X = X*(1.0 + mu*dt + sigma*delW);

}

sum1 += X; sum2 += X*X;

}

}

}

Compiler swaps innermost two loops to achieve vectorisation.
Mike Giles (Oxford) Computing trends Nov 29, 2017 34 / 38

OpenMP

Finally, remembering the operating system scheduler, we don’t want
threads to hop around between different cores.

This is accomplished by “thread pinning” (or setting “thread affinity”).

The OpenMP environment variable setting:
OMP PROC BIND=true

says that threads are to be bound to cores, i.e. not moved

The OpenMP environment variable OMP PLACES can be used to specify
which core each thread runs on.

Alternatively, the Intel compilers have a different environment variable:
KMP AFFINITY=type

where type is one of compact, scatter, explicit, ...

Mike Giles (Oxford) Computing trends Nov 29, 2017 35 / 38

OpenMP

With compact it tries to keep threads close together physically
one thread to core 0 in socket 0, then
one thread to core 1 in socket 0, then
one thread to core 2 in socket 0, . . . , then
one thread to core 0 in socket 1, . . .
– good when not using hyperthreading, but possibly bad with
hyperthreading where you might want just one thread per physical core

With scatter I think it will assign
one thread to core 0 in socket 0, then
one thread to core 0 in socket 1, then
one thread to core 1 in socket 0, then
one thread to core 1 in socket 1, . . .
– good for hyperthreading, but maybe not good if neighbouring threads
need to work on some neighbouring shared data, since that implies data
traffic between the two sockets.

Mike Giles (Oxford) Computing trends Nov 29, 2017 36 / 38

OpenMP

There is lots more to learn, but fortunately there’s a lot of good
information available:

Intel: OpenMP support in C++ compiler 18.0
https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-openmp-support

LLNL (Lawrence Livermore National Labs) tutorial:
https://computing.llnl.gov/tutorials/openMP/

MIT Press book: Using OpenMP (published in 2008 so possibly
a bit dated – e.g. might not have new simd features)
https://mitpress.mit.edu/books/using-openmp

if you get the opportunity, you should take a course – 2 days
is maybe about the right length

Mike Giles (Oxford) Computing trends Nov 29, 2017 37 / 38

Final comments

hardware is continuing to evolve rapidly, driven by applications such
as machine learning

parallelisation and vectorisation are critical to achieving good
performance

OpenMP is the simplest way to do both on shared-memory systems,
and you can achieve good performance if you think clearly about the
implications – i.e. how it will be implemented by the compiler

alternatively, consider CUDA programming on NVIDIA GPUs

Mike Giles (Oxford) Computing trends Nov 29, 2017 38 / 38

