Module 6: Monte Carlo question (Mike Giles)

The aim in this question is to investigate the Longstaff-Schwartz method for obtain a lower bound on the price of an American put option, and the associated upper bound due to Rogers' dual formulation.

As a starting point, you are given two MATLAB codes which you can download from http://people.maths.ox.ac.uk/gilesm/mc/ and can convert into other languages if you wish:

- amer_fd.m - an explicit finite difference approximation to give a reference value
- amer_mc.m - a simple Longstaff-Schwartz implementation with some deficiencies:
- doesn't use a separate set of paths for the final pricing calculation
- uses all paths in the least-squares regression, not just those which are in-the-money

The model parameters for the put option are $S_{0}=1, K=1, T=1$, $r=0.05, \sigma=0.2$, and the Monte Carlo computation uses 64 timesteps and 10^{5} paths.

Look at the Monte Carlo code and the way in which it relates to the theory given in the lecture. The implementation is actually simpler/cleaner than you might expect, because of the way in which MATLAB defines $A \backslash b$. When there are more equations than unknowns, it actually solves the least squares problem $A^{T} A x=A^{T} b$ to calculate the output x, so $A \backslash b$ gives the x we need.

Assignment:

1. run the finite difference code, and then uncomment the two lines in the code which will double the number of grid points and quadruple the number of timesteps (the $2: 4$ ratio is needed for numerical stability) and re-run the code - this gives you an accurate idea of the true value of the American put option.
2. modify the Monte Carlo code to

- use a separate set of 10^{5} independent paths for the final price evaluation;
- perform 100 independent runs (each with 10^{5} paths) of the whole thing, computing the average of the 100 runs and a corresponding confidence interval;
- repeat with a modification to perform the regression using only paths which are in-the-money.

3. using the Longstaff=Schwartz version which uses all of the paths to determine the regression coefficients (because we need the continuation value for all paths, not just those in the money) write a code to implement Rogers upper bound calculation, using 1000 paths, with 100 sub-paths at each timestep.

You should hand in the Monte Carlo codes you develop and a short writeup presenting your results and discussing whether they are as expected, based on the lectures.

