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Early Exercise

Perhaps the biggest challenge for Monte Carlo methods is
the accurate and efficient pricing of options with optional
early exercise:

Bermudan options: can exercise at a finite number of
times tj

American options: can exercise at any time

The challenge is to find/approximate the optimal strategy
(i.e. when to exercise) and hence determine the price and
Greeks.
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Early Exercise

Approximating the optimal exercise boundary introduces
new approximation errors:

An approximate exercise boundary is inevitably
sub-optimal
=⇒ under-estimate of “true” value, but accurate value
for the sub-optimal strategy

For the option buyer, sub-optimal price reflects value
achievable with sub-optimal strategy

For the option seller, “true” price is best a purchaser
might achieve

Can also derive an upper bound approximation
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Early Exercise

Why is early exercise so difficult for Monte Carlo methods?

leads naturally to a dynamic programming formulation
working backwards in time

fairly minor extension for finite difference methods
which already march backwards in time

doesn’t fit well with Monte Carlo methods which go
forwards in time
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Problem Formulation

Following description in Glasserman’s book, the Bermudan
problem has the dynamic programming formulation:

Ṽm(x) = h̃m(x)

Ṽi−1(x) = max
(
h̃i−1(x),E[Di−1,i Ṽi(Xi) | Xi−1 = x]

)

where

Xi is the underlying at exercise time ti

Ṽi(x) is option value at time ti assuming not previously
exercised

h̃i(x) is exercise value at time ti

Di−1,i is the discount factor for interval [ti−1, ti]
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Problem Formulation

By defining

hi(x) = D0,i h̃i(x)

Vi(x) = D0,i Ṽi(x)

where

D0,i = D0,1 D1,2 . . . Di−1,i

can simplify the formulation to

Vm(x) = hm(x)

Vi−1(x) = max (hi−1(x),E[Vi(Xi) | Xi−1 = x])
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Problem Formulation

An alternative point of view considers stopping rules τ ,
the time at which the option is exercised.

For a particular stopping rule, the initial option value is

V0(X0) = E[hτ (Xτ )],

the expected value of the option at the time of exercise.

The best that can be achieved is then

V0(X0) = sup
τ

E[hτ (Xτ )]

giving an optimisation problem.
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Problem Formulation

The continuation value is

Ci(x) = E[Vi+1(Xi+1) | Xi = x]

and so the optimal stopping rule is

τ = min {i : hi(Xi) > Ci(Xi)}

Approximating the continuation value leads to an
approximate stopping rule.
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Longstaff-Schwartz Method

The Longstaff-Schwartz method (2001) is the one most
used in practice.

Start with N path simulations, each going from initial time
t=0 to maturity t=T = tm.

Problem is to assign a value to each path, working out
whether and when to exercise the option.

This is done by working backwards in time, approximating
the continuation value.
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Longstaff-Schwartz Method

At maturity, the value of an option is

Vm(Xm) = hm(Xm)

At the previous exercise date, the continuation value is

Cm−1(x) = E[Vm(Xm) | Xm−1 = x]

This is approximated using a set of R basis functions as

Ĉm−1(x) =

R∑

r=1

βr ψr(x)
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Longstaff-Schwartz Method

The coefficients βr are obtained by a least-squares
minimisation, minimising

E

{(
E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)

)2}

Setting the derivative w.r.t. βr to zero gives

E

{(
E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)

)
ψr(Xm−1)

}
= 0

and hence

E[Vm(Xm) ψr(Xm−1)] = E[Ĉm−1(Xm−1) ψr(Xm−1)]

=
∑

s

E[ψr(Xm−1) ψs(Xm−1)] βs
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Longstaff-Schwartz Method

This set of equations can be written collectively as

Bψψ β = BV ψ

where

(BV ψ)r = E[Vm(Xm)ψr(Xm−1)]

(Bψψ)rs = E[ψr(Xm−1)ψs(Xm−1)]

Therefore,

β = B−1
ψψ

BV ψ
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Longstaff-Schwartz Method

In the numerical approximation, each of the expectations is
replaced by an average over the values from the N paths.

For example,

E[ψr(Xm−1)ψs(Xm−1)]

is approximated as

N−1
N∑

n=1

ψr(X
(n)
m−1) ψs(X

(n)
m−1)

Assuming that the number of paths is much greater than
the number of basis functions, the main cost is in
approximating Bψψ with a cost which is O(N R2).
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Longstaff-Schwartz Method

Once we have the approximation for the continuation value,
what do we do?

if Ĉ(Xm−1) < hm−1(Xm−1), exercise the option and set

Vm−1 = hm−1(Xm−1)

if not, then either set

Vm−1 = Ĉ(Xm−1)

(Tsitsiklis & van Roy, 1999), or

Vm−1 = Vm

(Longstaff & Schwartz, 2001)
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Longstaff-Schwartz Method

The Longstaff-Schwarz treatment only uses the
continuation estimate to decide on the exercise boundary
– no loss of accuracy for paths which are not exercised.

The Tsitsiklis-van Roy treatment introduces more error,
especially for American options where it gets applied each
timestep.

Also, Longstaff-Schwarz can do least squares fit only for
paths which are in-the-money (i.e. h(X) > 0) – leads to
improved accuracy.

Because of the optimality condition, the option value is
insensitive to small perturbations in the exercise boundary,
so can assume that exercise of paths is not affected when
computing first order Greeks.
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Longstaff-Schwartz Method

Provided the basis functions are chosen suitably, the
approximation

Ĉm−1(x) =

R∑

r=1

βr ψr(x)

gets increasingly accurate as R → ∞. Longstaff &
Schwartz used 5-20 basis functions in their paper
– I don’t know what is standard now in practice.

Having completed the calculation for tm−1, repeat the
procedure for tm−2 then tm−3 and so on. Could use different
basis functions for each exercise time – the coefficients β
will certainly be different.
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Longstaff-Schwartz Method

The estimate will tend to be biased low because of the
sub-optimal exercise boundary, however might be biased
high due to using the same paths for decision-making and
valuation.

To be sure of being biased low, should use two sets of
paths, one to estimate the continuation value and exercise
boundary, and the other for the valuation.

However, in practice the difference is quite small.

This leaves the problem of computing an upper bound.
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Upper Bounds

In Glasserman’s Bermudan version of Roger’s continuous
time result (2002), he lets Mm be a martingale with M0=0.

For any stopping rule τ , we have

E[hτ (Xτ )] = E[hτ (Xτ )−Mτ ] ≤ E[max
k

(hk(Xk)−Mk)]

This is true for all martingales M and all stopping rules τ
and hence

V0(X0) = sup
τ

E[hτ (Xτ )] ≤ inf
M

E[max
k

(hk(Xk)−Mk)]
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Upper Bounds

The key duality result is that in fact there is equality

sup
τ

E[hτ (Xτ )] = inf
M

E[max
k

(hk(Xk)−Mk)]

so that

an arbitrary τ gives a lower bound

an arbitrary M gives an upper bound

making both of them “better” shrinks the gap between
them to zero
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Upper Bounds

Glasserman proves by induction that the optimal martingale
M is equal to

Mk =

k∑

1

(
Vi(Xi)− E[Vi(Xi) | Xi−1]

)

To get a good upper bound we approximate this martingale.
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Upper Bounds

The approximate martingale for a particular path is defined
as

M̂k =

k∑

1

(
Vi(Xi)− P−1

∑

p

Vi(X
(p)
i )

)

where the X
(p)
i are values for Xi from P different mini-paths

starting at Xi−1, and

Vi(Xi) = max(hi(Xi), Ĉi(Xi))

with Ĉi(Xi) being the approximate continuation value given
by the Longstaff-Schwartz algorithm.

Glasserman suggests up to 100 mini-paths may be needed.
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Final Words

Bermudan and American options are important
applications

Longstaff-Schwartz method is popular, but still plenty
of scope for improvement?

suspect that finite difference method is used for
Greeks?

is independent second set of paths used in practice?

are upper bounds used in practice?
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