
Advanced Monte Carlo Methods:
Quasi-Monte Carlo

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

QMC – p. 1



Quasi Monte Carlo

low discrepancy sequences

Koksma-Hlawka inequality

rank-1 lattice rules and Sobol sequences

randomised QMC

identification of dominant dimension

QMC – p. 2



Quasi Monte Carlo

Standard Monte Carlo approximates high-dimensional
hypercube integral ∫

[0,1]d
f(x) dx

by

1

N

N∑

i=1

f(x(i))

with points chosen randomly, giving

r.m.s. error proportional to N−1/2

confidence interval
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Quasi Monte Carlo

Standard quasi Monte Carlo uses the same equal-weight
estimator

1

N

N∑

i=1

f(x(i))

but chooses the points systematically so that

error roughly proportional to N−1

no confidence interval

(We’ll get the confidence interval back later by adding in
some randomisation!)
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Low Discrepancy Sequences

The key is to use points which are fairly uniformly spread
within the hypercube, not clustered anywhere.

The star discrepancy D∗
N (x(1), . . . x(N)) of a set of N points

is defined as

D∗
N = sup

B∈J

∣∣∣∣
A(B)

N
− λ(B)

∣∣∣∣

where J is the set of all hyper-rectangles of the form
∏

[u−i , u
+
i ], u±i ∈ [0, 1],

A(B) is the number of points in B, and λ(B) is the volume
(or measure) of B.
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Low Discrepancy Sequences

There are sequences for which

D∗
N ≤ C

(logN)d

N

where d is the dimension of the problem.

This is important because of the Koksma-Hlawka inequality.
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Koksma-Hlawka Inequality

∣∣∣∣∣
1

N

N∑

i=1

f(x(i))−
∫

[0,1]d
f(x) dx

∣∣∣∣∣ ≤ V (f) D∗
N (x(1), . . . x(N))

where V (f) is the Hardy-Krause variation of f defined (for
sufficiently differentiable f ) as a sum of terms of the form

∫

[0,1]k

∣∣∣∣
∂kf

∂xi1 . . . ∂xik

∣∣∣∣
xj=1,j 6=i1,...,ik

dx

with i1<i2<. . .<ik for k ≤ d.

Problem: not a useful error bound

in finance applications f often isn’t even bounded

even when it is, it’s not sufficiently differentiable and
estimating V (f) is computationally demanding QMC – p. 7



Koksma-Hlawka Inequality

However, still useful because of what it tells us about the
asymptotic behaviour:

Error < C
(logN)d

N

for small dimension d, (d<10?) this is much better than
N−1/2 r.m.s. error for standard MC

for large dimension d, (logN)d could be enormous,
so not clear there is any benefit
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Rank-1 Lattice Rule

A rank-1 lattice rule has the simple construction

x(i) =
i

N
z mod 1

where z is a d-dimensional “generating vector”,
and r mod 1 means dropping the integer part of r

In each dimension k, the values x
(i)
k are a permutation of

the equally spaced points 0, 1/N, 2/N . . . (N−1)/N which is
great for integrands f which vary only in one dimension.

Also very good if f(x) =
∑

k

fk(xk).
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Rank-1 Lattice Rule

Two dimensions: 256 points
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Sobol Sequences

The most popular QMC approach uses Sobol sequences
x(i) which have the property that for small dimensions
d < 40 the subsequence

2m ≤ i < 2m+1

of length 2m has precisely 2m−d points in each of the little
cubes of volume 2−d formed by bisecting the unit hypercube
in each dimension, and similar properties hold with other
pieces.
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Sobol Sequences

For example:

cutting it into halves in any dimension, each has 2m−1

points

cutting it into quarters in any dimension, each has 2m−2

points

cutting it into halves in one direction, then halves in
another direction, each quarter has 2m−2 points

etc.

The generation of these sequences is a bit complicated,
but it is fast and plenty of software is available to do it.
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Sobol sequences

Two dimensions: 256 points
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Randomised QMC

In the best cases, QMC error is O(N−1) instead of O(N−1/2)
but without a confidence interval.

To get a confidence interval using a rank-1 lattice rule,
we use several sets of QMC points, with the N points
in set m defined by

x(i,m) =

(
i

N
z + x(m)

)
mod 1

where x(m) is a random offset vector.
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Randomised QMC

For each m, let

fm =
1

N

N∑

i=1

f(x(i,m))

This is a random variable, and since E[f(x(i,m))] = E[f ]

it follows that E[fm] = E[f ]

By using multiple sets, we can estimate V[f ] in the usual
way and so get a confidence interval

More sets =⇒ better variance estimate, but poorer error.
Some people use as few as 10 sets, but I prefer 32.
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Randomised QMC

For Sobol sequences, randomisation is achieved through
digital scrambling:

x(i,m) = x(i)∨ X(m)

where the exclusive-or operation ∨ is applied bitwise so that

0.1010011

∨ 0.0110110

= 0.1100101

The benefit of the digital scrambling is that it maintains the
special properties of the Sobol sequence.
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Dominant Dimensions

QMC points have the property that the points are more
uniformly distributed through the lowest dimensions.

Consequently, it is important to think about how the
dimensions are allocated to the problem.

Ideally, we’d like to use a change of variables, so the
function we’re integrating depends only on the first
coordinate.
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Dominant Dimensions

Suppose we have an European option, based on d multiple
underlying assets with

log Si(T ) = log Si(0) +
(
r − 1

2σ
2
i

)
T + σiWi(T )

and the log Si(T ) have covariance matrix Σ.

If U is a d-dimensional QMC point, can produce
uncorrelated quasi-random Normals using

Xi = Φ−1Ui

but how do we generate correlated quasi-Normals?
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Dominant Dimensions

Previously, have generated correlated Normals through

Y = LX

with X i.i.d. N(0, 1) Normals, and L is any matrix such that
LLT = Σ.

However, for QMC different L’s are equivalent to a change
of coordinates and it can make a big difference. Usually
best to use a PCA construction

L = U Λ1/2

with eigenvalues in diagonal matrix Λ (and associated
eigenvectors U ) arranged in descending order, from largest
(=⇒ most important?) to smallest.
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Path-dependent options

Same ingredients as simple European options:

Sobol or lattice rule quasi-uniform generators

PCA to best use QMC inputs for multi-dimensional
applications

randomised QMC to regain confidence interval

New ingredient:

how best to use QMC inputs to generate Brownian
increments
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Quasi-Monte Carlo

When using standard Normal random inputs for MC
simulation, can express expectation as a multi-dimensional
integral with respect to inputs

V = E[f̂(Ŝ)] =

∫
f̂(Ŝ) φ(Z) dZ

where φ(Z) is multi-dimensional standard Normal p.d.f.

Putting Zn = Φ−1Un turns this into an integral over a
M -dimensional hypercube

V = E[f̂(Ŝ)] =

∫
f̂(Ŝ) dU
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Quasi-Monte Carlo

This is then approximated as

N−1
∑

n

f̂(Ŝ(n))

and each path calculation involves the computations

U → Z → ∆W → Ŝ → f̂

The key step here is the second, how best to convert the
vector Z into the vector ∆W . With standard Monte Carlo, as
long as ∆W has the correct distribution, how it is generated
is irrelevant, but with QMC it does matter.
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Quasi-Monte Carlo

For a scalar Brownian motion W (t) with W (0)=0, defining
Wn=W (nh), each Wn is Normally distributed and for j ≥ k

E[Wj Wk] = E[W 2
k ] + E[(Wj−Wk)Wk] = tk

since Wj−Wk is independent of Wk.

Hence, the covariance matrix for W is Ω with elements

Ωj,k = min(tj , tk)
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Quasi-Monte Carlo

The task now is to find a matrix L such that

L LT = Ω = h




1 1 . . . 1 1

1 2 . . . 2 2

. . . . . . . . . . . . . . .

1 2 . . . M−1 M−1

1 2 . . . M−1 M




We will consider 3 possibilities:

Cholesky factorisation

PCA

Brownian Bridge treatment
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Cholesky factorisation

The Cholesky factorisation gives

L =
√
h




1 0 . . . 0 0

1 1 . . . 0 0

. . . . . . . . . . . . . . .

1 1 . . . 1 0

1 1 . . . 1 1




and hence

Wn =

n∑

m=1

√
h Zm =⇒ ∆Wn = Wn −Wn−1 =

√
h Zn

i.e. standard MC approach
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PCA construction

The PCA construction uses

L = U Λ1/2 =
(

U1 U2 . . .
)



λ
1/2
1

λ
1/2
2

. . .




with the eigenvalues λn and eigenvectors Un arranged in
descending order, from largest to smallest.

Numerical computation of the eigenvalues and eigenvectors
is costly for large numbers of timesteps, so instead use
theory due to Åkesson and Lehoczky (1998)
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PCA construction

It is easily verified that

Ω−1 = h−1




2 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2 −1

−1 1




.

This looks like the finite difference operator approximating a
second derivative, and so the eigenvectors are Fourier
modes.
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PCA construction

The eigenvectors of both Ω−1 and Ω are

(Um)n =
2

√
2M + 1

sin

(
(2m−1)nπ

2M+1

)

and the eigenvalues of Ω are the reciprocal of those of Ω−1,

λm =
h

4

(
sin

(
(2m−1) π

2 (2M+1)

))−2

Because the eigenvectors are Fourier modes, an efficient
FFT transform can be used (Scheicher, 2006) to compute

L Z = U
(
Λ1/2 Z

)
=

∑

m

(
√

λm Zm)Um
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Brownian Bridge construction

The Brownian Bridge construction uses the theory from a
previous lecture.

The final Brownian value is constructed using Z1:

WM =
√
T Z1

Conditional on this, the midpoint value WM/2 is Normally
distributed with mean 1

2WM and variance T/4, and so can
be constructed as

WM/2 =
1
2WM +

√
T/4 Z2
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Brownian Bridge construction

The quarter and three-quarters points can then be
constructed as

WM/4 = 1
2WM/2 +

√
T/8 Z3

W3M/4 = 1
2(WM/2 +WM ) +

√
T/8 Z4

and the procedure continued recursively until all Brownian
values are defined.

(This assumes M is a power of 2 – if not, the
implementation is slightly more complex)

I have a slight preference for this method because it is
particularly effective for European option for which S(T ) is
very strongly dependent on W (T ).
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Multi-dimensional Brownian motion

The preceding discussion concerns the construction of a
single, scalar Brownian motion.

Suppose now that we have to generate a P -dimensional
Brownian motion with correlation matrix Σ between the
different components.

What do we do?
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Multi-dimensional Brownian motion

First, using either PCA or BB to construct P uncorrelated
Brownian paths using

Z1, Z1+P , Z1+2P , Z1+3P , . . . for first path

Z2, Z2+P , Z2+2P , Z2+3P , . . . for second path

Z3, Z3+P , Z3+2P , Z3+3P , . . . for third path

etc.

This uses the “best” dimensions of Z for the overall
behaviour of all of the paths.
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Multi-dimensional Brownian motion

Second, define

W corr
n = LΣ W uncorr

n =⇒ ∆W corr
n = LΣ ∆W uncorr

n

where W uncorr
n is the uncorrelated sequence,

W corr
n is the correlated sequence, and

LΣ LT
Σ = Σ
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Numerical results

Usual European call test case based on geometric
Brownian motion:

128 timesteps so weak error is negligible

comparison between
QMC using Brownian Bridge
QMC without Brownian Bridge
standard MC

QMC calculations use Sobol generator

all calculations use 64 “sets” of points – for QMC calcs,
each has a different random offset

plots show error and 3 s.d. error bound
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QMC with Brownian Bridge
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QMC without Brownian Bridge
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Standard Monte Carlo
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Final words

QMC offers large computational savings over the
standard Monte Carlo approach

best to use randomised QMC to regain confidence
intervals, at the cost of slightly poorer accuracy

very important to use PCA or Brownian Bridge
construction to create discrete Brownian increments
– much better than “standard” approach which is
equivalent to Cholesky factorisation of covariance
matrix
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