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SDE Path Simulation

In Module 2, looked at the case of European options for
which the underlying SDE could be integrated exactly.

Now address the more general case in which the solution to
the SDE needs to be approximated because

the option is path-dependent, and/or

the SDE is not integrable

This lecture will cover:

Euler-Maruyama discretisation, weak and strong errors

improved accuracy for path-dependent options
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Euler-Maruyama method

The simplest approximation for the scalar SDE

dS = a(S, t) dt+ b(S, t) dW

is the forward Euler scheme, which is known as the
Euler-Maruyama approximation when applied to SDEs:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Here h is the timestep, Ŝn is the approximation to S(nh) and
the ∆Wn are i.i.d. N(0, h) Brownian increments.
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Euler-Maruyama method

For ODEs, the forward Euler method has O(h) accuracy,
and other more accurate methods would usually be
preferred.

However, SDEs are very much harder to approximate so
the Euler-Maruyama method is used widely in practice.

Numerical analysis is also very difficult and even the
definition of “accuracy” is tricky.
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Weak convergence

In finance applications, we are mostly concerned with

weak errors, the error in the expected payoff due to using
a finite timestep h.

For a European payoff f(S(T ), the weak error is

E[f(S(T ))]− E[f(ŜT/h)]

For a path-dependent option, the weak error is

E[f(S)]− E[f̂(Ŝ)]

where f(S) is a function of the entire path S(t), and f̂(Ŝ) is a
corresponding approximation using the whole discrete path.
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Weak convergence

Key theoretical result (Bally and Talay, 1995):

If p(S) is the p.d.f. for S(T ) and p̂(S) is the p.d.f. for ŜT/h

computed using the Euler-Maruyama approximation,
then under certain conditions on a(S, t) and b(S, t)

p(S)− p̂(S) = O(h)

and hence

E[f(S(T ))]− E[f(ŜT/h)] = O(h)

(This holds even for digital options with discontinuous
payoffs f(S). Earlier theory covered only European options
such as put and call options with Lipschitz payoffs.)
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Weak convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1

European call: S0 = 100,K = 110.

Plot shows weak error versus analytic expectation when

using 108 paths, and also Monte Carlo error (3 standard
deviations)

Module 4: Monte Carlo – p. 7



Weak convergence

10
-1

10
-2

10
-1

Weak convergence -- comparison to exact solution

h

E
rr

or

 

 
 Weak error
 MC error

Module 4: Monte Carlo – p. 8



Weak convergence

Previous plot showed difference between exact expectation
and numerical approximation.

What if the exact solution is unknown? Compare
approximations with timesteps h and 2h.

If

E[f(S(T ))]− E[f(Ŝh
T/h)] ≈ a h

then

E[f(S(T ))]− E[f(Ŝ2h
T/2h)] ≈ 2 a h

and so

E[f(Ŝh
T/h)]− E[f(Ŝ2h

T/2h)] ≈ a h
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Weak convergence

To minimise the number of paths that need to be simulated,
best to use same driving Brownian path when doing 2h
and h approximations – i.e. take Brownian increments for h
simulation and sum in pairs to get Brownian increments for
2h simulation.

This is like using the same driving Brownian paths for finite
difference Greeks. The variance is lower because the h and
2h paths are close to each other (strong convergence).

(In Module 6, I’ll explainhow this forms the basis for the

Multilevel Monte Carlo method (Giles, 2006))
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Weak convergence
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Strong convergence

Strong convergence looks instead at the average error in
each individual path:

E

[ ∣∣∣S(T )− ŜT/h

∣∣∣
]

or

(
E

[(
S(T )− ŜT/h

)2])1/2

The main theoretical result (Kloeden & Platen 1992) is that
for the Euler-Maruyama method under certain conditions on

a(S, t) and b(S, t) these are both O(
√
h).
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Strong convergence

Thus, each approximate path deviates by O(
√
h) from its

true path.

How can the weak error be O(h)? Because the error

S(T )− ŜT/h

has mean O(h) even though the r.m.s. is O(
√
h).

(In fact to leading order it is normally distributed with zero
mean and variance O(h).)
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Strong convergence

Numerical demonstration based on same Geometric
Brownian Motion.

Plot shows two curves, one showing the difference from the
true solution

S(T ) = S0 exp
(
(r− 1

2σ
2)T + σW (T )

)

and the other showing the difference from the 2h
approximation
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Strong convergence
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Mean Square Error

Finally, how to decide whether it is better to increase the
number of timesteps (reducing the weak error) or the
number of paths (reducing the Monte Carlo sampling
error)?

If the true option value is V = E[f ]

and the discrete approximation is V̂ = E[f̂ ]

and the Monte Carlo estimate is Ŷ =
1

N

N∑

n=1

f̂ (n)

then . . .
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Mean Square Error

. . . the Mean Square Error is

E

[(
Ŷ − V

)2]
= E

[(
Ŷ −E[f̂ ] + E[f̂ ]−E[f ]

)2]

= E

[
(Ŷ −E[f̂ ])2

]
+ (E[f̂ ]−E[f ])2

= N−1
V[f̂ ] +

(
E[f̂ ]−E[f ]

)2

first term is due to the variance of estimator

second term is square of bias due to weak error
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Mean Square Error

If there are M timesteps, the computational cost is
proportional to C = NM and the MSE is approximately

aN−1 + bM−2 = aN−1 + bC−2N2.

For a fixed computational cost, this is a minimum when

N =

(
aC2

2 b

)1/3

, M =

(
2 bC

a

)1/3

,

and hence

aN−1 =

(
2 a2b

C2

)1/3

, bM−2 =

(
a2b

4C2

)1/3

,

so the MC term is twice as big as the bias term.
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Summary

simple Euler-Maruyama method is basis for most Monte
Carlo simulation in industry – O(h) weak convergence

and O(
√
h) strong convergence

weak convergence is very important when estimating
expectations

strong convergence is usually not important

Mean-Square-Error is minimised by balancing bias due
to weak error and Monte Carlo sampling error
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Path-dependent options

For European options, Euler-Maruyama method has O(h)
weak convergence.

However, for some path-dependent options it can give only

O(
√
h) weak convergence, unless the numerical payoff is

constructed carefully.
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Barrier option

A down-and-out call option has discounted payoff

exp(−rT ) (S(T )−K)+1mint S(t)>B

i.e. it is like a standard call option except that it pays nothing
if the minimum value drops below the barrier B.

The natural numerical discretisation of this is

f = exp(−rT ) (ŜT/h −K)+1
minn Ŝn>B
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Barrier option

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1

Down-and-out call: S0 = 100,K = 110, B = 90.

Plots shows weak error versus analytic expectation using

106 paths, and difference from 2h approximation using

105 paths.

(We don’t need as many paths as before because the weak
errors are much larger in this case.)
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Barrier option
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Barrier option
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Lookback option

A floating-strike lookback call option has discounted payoff

exp(−rT )

(
S(T )−min

[0,T ]
S(t)

)

The natural numerical discretisation of this is

f = exp(−rT )
(
ŜT/h −min

n
Ŝn

)

Module 4: Monte Carlo – p. 25



Lookback option
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Lookback option
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Brownian bridge

To recover O(h) weak convergence we first need some
theory.

Consider simple Brownian motion

dS = a dt+ b dW

with constant a, b and initial data S(0)=0.

Question: given S(T ), what is conditional probability density
for S(T/2)?
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Conditional probability

With discrete probabilities,

P (A|B) =
P (A ∩ B)

P (B)

Similarly, with probability density functions

p1(x|y) =
p2(x, y)

p3(y)

where

p1(x|y) is the conditional p.d.f. for x, given y

p2(x, y) is the joint probability density function for x, y

p3(y) is the probability density function for y
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Brownian bridge

In our case,

y ≡ S(T ), x ≡ S(T/2)

p2(x, y) =
1√
π T b

exp

(
− (x− aT/2)2

b2 T

)

× 1√
π T b

exp

(
− (y − x− aT/2)2

b2 T

)

p3(y) =
1√

2π T b
exp

(
− (y − aT )2

2 b2 T

)

=⇒ p1(x|y) =
1√

π T/2 b
exp

(
− (x− y/2)2

b2 T/2

)

Hence, x is Normally distributed with mean y/2 and
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Brownian bridge

Extending this to a particular timestep with endpoints S(tn)
and S(tn+1), conditional on these the mid-point is Normally
distributed with mean

1
2 (S(tn) + S(tn+1))

and variance b2h/4.

We can take a sample from this conditional p.d.f. and then
repeat the process, recursively bisecting each interval to fill
in more and more detail.

Note: the drift a is irrelevant, given the two endpoints.
Because of this, we will take a = 0 in the next bit of theory.
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Barrier crossing

Consider zero drift Brownian motion with S(0)>0.

If the path S(t) hits a barrier at 0, it is equally likely
thereafter to go up or down. Hence, by symmetry, for s > 0,
the p.d.f. for paths with S(T ) = s after hitting the barrier is
equal to the p.d.f. for paths with S(T ) = −s.

Thus, for S(T ) > 0,

P (hit barrier|S(T )) =
exp

(
− (−S(T )−S(0))2

2b2T

)

exp
(
− (S(T )−S(0))2

2b2T

)

= exp

(
− 2S(T )S(0)

b2T

)
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Barrier crossing

For a timestep [tn, tn+1] and non-zero barrier B this
generalises to

P (hit barrier|Sn, Sn+1 > B) = exp

(
− 2 (Sn+1−B) (Sn−B)

b2h

)

This can also be viewed as the cumulative probability
P (Smin < B) where Smin = min

[tn,tn+1]
S(t).

Since this is uniformly distributed on [0, 1] we can equate
this to a uniform [0, 1] random variable Un and solve to get

Smin = 1
2

(
Sn+1 + Sn −

√
(Sn+1−Sn)2 − 2 b2h logUn

)
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Barrier crossing

For a barrier above, we have

P (hit barrier|Sn, Sn+1 < B) = exp

(
− 2 (B−Sn+1) (B−Sn)

b2h

)

and hence

Smax = 1
2

(
Sn+1 + Sn +

√
(Sn+1−Sn)2 − 2 b2h logUn

)

where Un is again a uniform [0, 1] random variable.
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Barrier option

Returning now to the barrier option, how do we define the

numerical payoff f̂(Ŝ)?

First, calculate Ŝn as usual using Euler-Maruyama method.

Second, two alternatives:

use (approximate) probability of crossing the barrier

directly sample (approximately) the minimum in each
timestep
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Barrier option

Alternative 1: treating the drift and volatility as being
approximately constant within each timestep, the probability
of having crossed the barrier within timestep n is

Pn = exp

(
− 2 (Ŝn+1−B)+ (Ŝn−B)+

b2(Ŝn, tn) h

)

Probability at end of not having crossed barrier is∏

n

(1− Pn) and so the payoff is

f̂(Ŝ) = exp(−rT ) (ŜT/h −K)+
∏

n

(1− Pn).

I prefer this approach because it is differentiable – good for
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Barrier option

Alternative 2: again treating the drift and volatility as being
approximately constant within each timestep, define the
minimum within timestep n as

M̂n = 1
2

(
Ŝn+1 + Ŝn −

√
(Ŝn+1−Ŝn)2 − 2 b2(Ŝn, tn)h logUn

)

where the Un are i.i.d. uniform [0, 1] random variables.

The payoff is then

f̂(Ŝ) = exp(−rT ) (ŜT/h −K)+ 1
minn M̂n>B

With this approach one can stop the path calculation as

soon as one M̂n drops below B.
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Lookback option

This is treated in a similar way to Alternative 2 for the
barrier option.

We construct a minimum M̂n within each timestep and then
the payoff is

f̂(Ŝ) = exp(−rT )
(
ŜT/h −min

n
M̂n

)

This is differentiable, so good for Greeks – unlike
Alternative 2 for the barrier option.
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Weak convergence

With these modification to the numerical payoff
approximation, the weak convergence for both barrier and

lookback options is improved from O(
√
h) to O(h).

See practical for numerical demonstration!
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Final Words

“natural” approximation of barrier and lookback options

leads to poor O(
√
h) weak convergence

this is an inevitable consequence of dependence on

minimum/maximum and O(
√
h) path variation within

each timestep

improved treatment based on Brownian bridge theory
approximates behaviour within timestep as simple
Brownian motion with constant drift and volatility
– gives O(h) weak convergence

Module 4: Monte Carlo – p. 40


	SDE Path Simulation
	Euler-Maruyama method
	Euler-Maruyama method
	Weak convergence
	Weak convergence
	Weak convergence
	Weak convergence
	Weak convergence
	Weak convergence
	Weak convergence
	Strong convergence
	Strong convergence
	Strong convergence
	Strong convergence
	Mean Square Error
	Mean Square Error
	Mean Square Error
	Summary
	Path-dependent options
	Barrier option
	Barrier option
	Barrier option
	Barrier option
	Lookback option
	Lookback option
	Lookback option
	Brownian bridge
	Conditional probability
	Brownian bridge
	Brownian bridge
	Barrier crossing
	Barrier crossing
	Barrier crossing
	Barrier option
	Barrier option
	Barrier option
	Lookback option
	Weak convergence
	Final Words

