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Greeks

In Monte Carlo applications we don’t just want to know the
expected discounted value of some payoff

V = E[f(S(T ))]

We also want to know a whole range of “Greeks”
corresponding to first and second derivatives of V
with respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.
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Greeks

The Greeks are needed for hedging and risk analysis.

Whereas prices can be obtained to some extent from
market prices, simulation is the only way to determine the
Greeks.

In this lecture we will explore 3 approaches:

finite differences

likelihood ratio method

pathwise sensitivities
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Finite difference sensitivities

If V (θ) = E[f(S(T ))] for an input parameter θ is sufficiently

differentiable, then the sensitivity
∂V

∂θ
can be approximated

by one-sided finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ)

∆θ
+ O(∆θ)

or by central finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ−∆θ)

2∆θ
+ O((∆θ)2)

(This approach is referred to as getting Greeks by
“bumping” the input parameters.)
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Finite difference sensitivities

The clear advantage of this approach is that it is very
simple to implement (hence the most popular in practice?)

However, the disadvantages are:

expensive (2 extra sets of calculations for central
differences)

significant bias error if ∆θ too large

machine roundoff errors is ∆θ too small

large variance if f(S(T )) discontinuous and ∆θ small
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Finite difference sensitivities

Let X(i)(θ+∆θ) and X(i)(θ−∆θ) be the values of f(S(T ))
obtained for different MC samples, so the central difference

estimate for
∂V

∂θ
is given by

Ŷ =
1

2∆θ

(
N−1

N∑

i=1

X(i)(θ+∆θ)−N−1
N∑

i=1

X(i)(θ−∆θ)

)

=
1

2N∆θ

N∑

i=1

(
X(i)(θ+∆θ)−X(i)(θ−∆θ)

)
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Finite difference sensitivities

If independent samples are taken for both X(i)(θ+∆θ) and

X(i)(θ−∆θ) then

V[Ŷ ] ≈
(

1

2N∆θ

)2∑

j

(
V[X(θ+∆θ)] +V[X(θ−∆θ)]

)

≈
(

1

2N∆θ

)2

2N V[f ]

=
V[f ]

2N(∆θ)2

which is very large for ∆θ ≪ 1.
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Finite difference sensitivities

It is much better for X(i)(θ+∆θ) and X(i)(θ−∆θ) to use the
same set of random inputs.

If X(i)(θ) is differentiable with respect to θ, then

X(i)(θ+∆θ)−X(i)(θ−∆θ) ≈ 2∆θ
∂X(i)

∂θ

and hence

V[Ŷ ] ≈ N−1
V

[
∂X

∂θ

]
,

which behaves well for ∆θ ≪ 1, so one should choose a
small value for ∆θ to minimise the bias due to the finite
differencing.

MC Lecture 2 – p. 8



Finite difference sensitivities

However, there are problems if ∆θ is chosen to be
extremely small.

In finite precision arithmetic,

X(i)(θ±∆θ)

has an error which is approximately random with
r.m.s. magnitude δ

single precision δ ≈ 10−6|X|
double precision δ ≈ 10−14|X|
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Finite difference sensitivities

Consequently,

1

2∆θ

(
X(i)(θ+∆θ)−X(i)(θ−∆θ)

)

has an extra error term with approximate variance

δ2

2(∆θ)2

and therefore Ŷ has an extra error term with approximate
variance

δ2

2N(∆θ)2
.
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Finite difference sensitivities

For double precision computations, if θ = O(1), then can
probably use

∆θ = 10−6

without any problems, and even the O(∆θ) finite difference
error from one-sided differencing will probably be small
compared to the MC sampling error.

For single precision, better to use a larger perturbation, e.g.

∆θ = 10−4

and use the more expensive central differencing to
minimise the discretisation error.
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Finite difference sensitivities

Next, we analyse the variance of the finite difference
estimator when the payoff is discontinuous.

In this case

For most samples, X(i)(θ+∆θ)−X(i)(θ−∆θ) = O(∆θ)

For an O(∆θ) fraction, X(i)(θ+∆θ)−X(i)(θ−∆θ) = O(1)

=⇒ E

[
X(i)(θ+∆θ)−X(i)(θ−∆θ)

2∆θ

]
= O(1)

E

[(
X(i)(θ+∆θ)−X(i)(θ−∆θ)

2∆θ

)2
]

= O(∆θ−1)

This gives E[Ŷ ] = O(1), but V[Ŷ ] = O(N−1∆θ−1).
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Finite difference sensitivities

So, small ∆θ gives a large variance, while a large ∆θ gives
a large finite difference discretisation error.

To determine the optimum choice we use the following

result: if Ŷ is an estimator for E[Y ] then

E

[(
Ŷ − E[Y ]

)2]
= E

[(
Ŷ −E[Ŷ ] + E[Ŷ ]−E[Y ]

)2]

= E

[
(Ŷ −E[Ŷ ])2

]
+ (E[Ŷ ]−E[Y ])2

= V[Ŷ ] +
(
E[Ŷ ]−E[Y ]

)2

Mean Square Error = variance + (bias)2
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Finite difference sensitivities

In our case, the MSE (mean-square-error) is

V[Ŷ ] + bias2 ∼ a

N ∆θ
+ b∆θ4.

This is minimised by choosing ∆θ ∝ N−1/5, giving

√
MSE ∝ N−2/5

in contrast to the usual MC result in which
√

MSE ∝ N−1/2
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Finite difference sensitivities

Second derivatives such as Γ can also be approximated by
central differences:

∂2V

∂θ2
=

V (θ+∆θ)− 2V (θ) + V (θ−∆θ)

∆θ2
+ O(∆θ2)

This will again have a larger variance if either the payoff or
its derivative is discontinuous.

MC Lecture 2 – p. 15



Finite difference sensitivities

Discontinuous payoff: ✲

✻

✉ ✉

✉

For an O(∆θ) fraction of samples

X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ) = O(1)

=⇒ E

[(
X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ)

∆θ2

)2
]
= O(∆θ−3)

This gives V[Ŷ ] = O(N−1∆θ−3).
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Finite difference sensitivities

Discontinuous derivative: ✲

✻

✘✘✘✘✘✘✘✘✘

✉ ✉
✉

For an O(∆θ) fraction of samples

X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ) = O(∆θ)

=⇒ E

[(
X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ)

∆θ2

)2
]
= O(∆θ−1)

This gives V[Ŷ ] = O(N−1∆θ−1).
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Finite difference sensitivities

Hence, for second derivatives the variance of the finite
difference estimator is

O(N−1) if the payoff is twice differentiable

O(N−1∆θ−1) if the payoff has a discontinuous derivative

O(N−1∆θ−3) if the payoff is discontinuous

These can be used to determine the optimum ∆θ in each
case to minimise the Mean Square Error.
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Likelihood ratio method

Defining p(S) to the probability density function for the final
state S(T ), then

V = E[f(S(T ))] =

∫
f(S) p(S) dS,

=⇒ ∂V

∂θ
=

∫
f
∂p

∂θ
dS =

∫
f
∂(log p)

∂θ
p dS = E

[
f
∂(log p)

∂θ

]

The quantity
∂(log p)

∂θ
is sometimes called the “score

function”.

MC Lecture 2 – p. 19



Likelihood ratio method

Note that when f = 1, we get

∂

∂θ
E[1] = 0

and therefore

E

[
∂(log p)

∂θ

]
= 0

This means that we can use the score function as a control
variate – can be useful to reduce the variance, and is a
handy check to make sure we have derived it correctly.
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Likelihood ratio method

Example: GBM with arbitrary payoff f(S(T )).

For the usual Geometric Brownian motion with constants
r, σ, the final log-normal probability distribution is

p(S) =
1

Sσ
√
2πT

exp

[
−1

2

(
log(S/S0)− (r − 1

2σ
2)T

σ
√
T

)2
]

log p = − log S−log σ−1
2 log(2πT )−1

2

(
log(S/S0)− (r − 1

2σ
2)T

σ
√
T

)2

=⇒ ∂ log p

∂S0
=

log(S/S0)− (r − 1
2σ

2)T

S0σ2T
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Likelihood ratio method

Hence

∆ = E

[
log(S/S0)− (r − 1

2σ
2)T

S0 σ2T
f(S(T ))

]

In the Monte Carlo simulation,

log(S/S0)− (r − 1
2σ

2)T = σW (T )

so the expression can be simplified to

∆ = E

[
W (T )

S0 σ T
f(S(T ))

]

– very easy to implement so you estimate ∆ at the same
time as estimating the price V
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Likelihood ratio method

Similarly for vega we have

∂ log p

∂σ
= − 1

σ
−

√
T

(
log(S/S0)− (r − 1

2σ
2)T

S0σ2T

)

+
1

σ

(
log(S/S0)− (r − 1

2σ
2)T

S0σ2T

)2

and hence

vega = E

[(
1

σ

(
W (T )2

T
− 1

)
−W (T )

)
f(S(T ))

]
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Likelihood ratio method

In both cases, the variance is very large when σ is small,
and it is also large for ∆ when T is small.

More generally, LRM is usually the approach with the
largest variance.
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Likelihood ratio method

To get second derivatives, note that

∂2 log p

∂θ2
=

∂

∂θ

(
1

p

∂p

∂θ

)
=

1

p

∂2p

∂θ2
− 1

p2

(
∂p

∂θ

)2

=⇒ 1

p

∂2p

∂θ2
=

∂2 log p

∂θ2
+

(
∂ log p

∂θ

)2

and hence

∂2V

∂θ2
= E

[(
∂2 log p

∂θ2
+

(
∂ log p

∂θ

)2
)
f(S(T ))

]
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Likelihood ratio method

In the multivariate extension, X = log S(T ) can be written as

X = µ+ LZ

where µ is the mean vector, Σ=LLT is the covariance
matrix and Z is a vector of uncorrelated Normals. The joint
p.d.f. is

log p = −1
2 log |Σ| − 1

2(X−µ)TΣ−1(X−µ)− 1
2d log(2π).

and after a lot of algebra we obtain

∂ log p

∂µ
= L−TZ,

∂ log p

∂Σ
= 1

2 L
−T
(
ZZT−I

)
L−1
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Pathwise sensitivities

Start instead with

V ≡ E [f(S(T ))] =

∫
f(S(T )) pW (W ) dW

and differentiate this to get

∂V

∂θ
=

∫
∂f

∂S

∂S(T )

∂θ
pW dW = E

[
∂f

∂S

∂S(T )

∂θ

]

with ∂S(T )/∂θ being evaluated at fixed W .

Note: this derivation needs f(S) to be differentiable, but by
considering the limit of a sequence of smoothed
(regularised) functions can prove it’s OK provided f(S) is
continuous and piecewise differentiable
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Pathwise sensitivities

This leads to the estimator

1

N

N∑

i=1

∂f

∂S
(S(i))

∂S(i)

∂θ

which is the derivative of the usual price estimator

1

N

N∑

i=1

f(S(i))

Gives incorrect estimates when f(S) is discontinuous.

e.g. for digital put
∂f

∂S
= 0 so estimated value of Greek is

zero – clearly wrong.
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Pathwise sensitivities

Extension to second derivatives is straightforward

∂2V

∂θ2
=

∫ {
∂2f

∂S2

(
∂S(T )

∂θ

)2

+
∂f

∂S

∂2S(T )

∂θ2

}
pW dW

= E

[
∂2f

∂S2

(
∂S(T )

∂θ

)2

+
∂f

∂S

∂2S(T )

∂θ2

]

with ∂2S(T )/∂θ2 also being evaluated at fixed W .

However, this requires f(S) to have a continuous first
derivative – a problem in practice
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Pathwise sensitivities

Extension to multivariate case is straightforward

Sk(T ) = Sk(0) exp

(
(r− 1

2σ
2
k)T +

∑

l

LklXl

)

so

log Sk(T ) = log Sk(0) + (r− 1
2σ

2
k)T +

∑

l

LklXl

and hence

1

Sk(T )

∂Sk(T )

∂θ
=

1

Sk(0)

∂Sk(0)

∂θ
− σk

∂σk
∂θ

T +
∑

l

∂Lkl

∂θ
Xl
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Pathwise sensitivities

To handle payoffs which do not have the necessary
continuity/smoothness one can modify the payoff

For digital options it is common to use a piecewise linear
approximation to limit the magnitude of ∆ near maturity
– avoids large transaction costs

Bank selling the option will price it conservatively
(i.e. over-estimate the price)

✲

✻

S
K

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄
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Pathwise sensitivities

The standard call option definition can be smoothed by
integrating the smoothed Heaviside function

Hε(S−K) = Φ

(
S−K

ε

)

with ε ≪ K, to get

f(S) = (S−K) Φ

(
S−K

ε

)
+

ε√
2π

exp

(
− (S−K)2

2 ε2

)

This will allow the calculation of Γ and other second
derivatives
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Final Words

Estimating Greeks is an important task, often more
important than estimating the prices

finite differences:

simplest, but least accurate and most expensive

always use the same random numbers for both calcs

optimum “bump” size is a tradeoff between variance
and bias

LRM (Likelihood Ratio Method)

OK for discontinuous payoffs, but a little complicated

pathwise sensitivity

my favourite – simple, lowest variance and least cost

needs continuous payoff for first derivatives, but
smoothing can be used for discontinuous payoffs
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Numerical differentiation

Suppose we have MATLAB code to compute f(x)
(with x and f(x) both scalar) and we want to compute the
derivative f ′(x).

Performing a Taylor series expansion,

f(x+∆x) ≈ f(x) + ∆x f ′(x) + 1
2∆x2 f ′′(x) + 1

6∆x3 f ′′′(x)

=⇒ f(x+∆x)− f(x)

∆x
≈ f ′(x) + 1

2∆x f ′′(x),

f(x+∆x)− f(x−∆x)

2∆x
≈ f ′(x) + 1

6∆x2 f ′′′(x),

The problem with taking ∆x ≪ 1 is inaccuracy due to finite
precision arithmetic.
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Complex Variable Trick

This is a very useful “trick”, which I learned about from this
very short article:

“Using Complex Variables to Estimate Derivatives
of Real Functions”, William Squire and George
Trapp, SIAM Review, 40(1):110-112, 1998.

which now has 331 citations according to Google Scholar.
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Complex Variable Trick

Suppose f(z) is a complex analytic function, and f(x) is
real when x is real.

Then

f(x+i∆x) ≈ f(x) + i∆x f ′(x)− 1
2∆x2 f ′′(x)− i 1

6∆x3 f ′′′(x)

and hence

Imf(x+ i∆x)

∆x
≈ f ′(x)− 1

6∆x2 f ′′′(x)

Now, we can take ∆x ≪ 1, and there is no problem due to
finite precision arithmetic.
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Complex Variable Trick

There are just a few catches, because f(z) must be
analytic:

need analytic extensions for min(x, y), max(x, y) and |x|
need analytic extensions to certain MATLAB functions,
e.g. normcdf

in MATLAB, must be aware that A′ is the Hermitian of A
(complex conjugate transpose), so use A.′ for the
simple transpose.

Using this, can very simply “differentiate” almost any
MATLAB code for a real function f(x).
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