Problem sheet 3: solutions

1. A Taylor series expansion gives

$$
\log (1+\varepsilon)=\varepsilon-\frac{1}{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right)
$$

and hence

$$
\log (1+r h+\sigma \Delta W)=r h+\sigma \Delta W-\frac{1}{2} \sigma^{2}(\Delta W)^{2}+O\left(h^{3 / 2}\right)
$$

and therefore

$$
\widehat{X}_{T / h} \approx r T+\sigma W(T)-\sum_{n} \frac{1}{2} \sigma^{2}(\Delta W)^{2} .
$$

The exact solution is

$$
X(T)=\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W(T)
$$

and hence the error is

$$
\left.X(T)-\widehat{X}_{T / h} \approx \sum_{n} \frac{1}{2} \sigma^{2}\left(\left(\Delta W_{n}\right)^{2}-h\right)\right) .
$$

Since the $\left(\Delta W_{n}\right)^{2}$ are independent with mean h and variance $2 h^{2}$, the Central Limit Theorem tells us that in the limit $h \rightarrow 0$ the sum is Normally distributed with zero mean and variance $\frac{1}{2} \sigma^{4} T h$.
2. If $a=r S, b=\sigma S$, the suggested numerical approximation gives

$$
\begin{aligned}
& \widehat{S}_{n+1}^{(p)}=\widehat{S}_{n}\left(1+r h+\sigma \Delta W_{n}\right) \\
& \widehat{S}_{n+1}=\widehat{S}_{n}\left(1+r h+\sigma \Delta W_{n}+\frac{1}{2} r^{2} h^{2}+r h \sigma \Delta W_{n}+\frac{1}{2} \sigma^{2}\left(\Delta W_{n}\right)^{2}\right)
\end{aligned}
$$

and following the same approach as in the previous question we find that the error is

$$
X(T)-\widehat{X}_{T / h} \approx \sum_{n}-\frac{1}{2} \sigma^{2} h=-\frac{1}{2} \sigma^{2} T
$$

3. (a) A bit of a trick question as the Milstein method in this case is the same as the Euler-Maruyama method since the volatility does not depend on S. Hence, in this case the Euler method has first order strong convergence, which explains the numerical results obtained in the last practical.
(b) In this case $b^{\prime}=\frac{1}{2} \sigma S^{-1 / 2}$ and so the Milstein method is

$$
\left.\widehat{S}_{n+1}=\widehat{S}_{n}+\kappa\left(\theta-\widehat{S}_{n}\right) h+\sigma \sqrt{\widehat{S}_{n}} \Delta W_{n}+\frac{1}{4} \sigma^{2}\left(\left(\Delta W_{n}\right)^{2}-h\right)\right)
$$

On a practical note: there is a possibility that the numerical method could lead to \widehat{S}_{n+1} being negative, in which case the square root becomes a problem for the next step. This is usually dealt with by modifying the square root to use

$$
\sqrt{\widehat{S}_{n}^{+}} \equiv \sqrt{\max \left(\widehat{S}_{n}, 0\right)}
$$

4. The Euler-Maruyama method for Geometric Brownian Motion gives

$$
\widehat{S}_{n+1}=\widehat{S}_{n}\left(1+r h+\sigma \Delta W_{n}\right)
$$

If we define

$$
s_{n}^{(1)}=\frac{\partial \widehat{S}_{n}}{\partial S_{0}}, \quad s_{n}^{(2)}=\frac{\partial \widehat{S}_{n}}{\partial \sigma}
$$

then straightforward differentiation yields

$$
\begin{aligned}
& s_{n+1}^{(1)}=s_{n}^{(1)}\left(1+r h+\sigma \Delta W_{n}\right), \\
& s_{n+1}^{(2)}=s_{n}^{(2)}\left(1+r h+\sigma \Delta W_{n}\right)+\widehat{S}_{n} \Delta W_{n}
\end{aligned}
$$

with initial data $s_{n}^{(1)}=1, s_{n}^{(2)}=0$.
Now we have to consider each of the payoffs:
(a) For the barrier option we have

$$
\widehat{f}(\widehat{S})=\exp (-r T)\left(\widehat{S}_{T / h}-K\right)^{+} \prod_{n}\left(1-P_{n}\right)
$$

with

$$
P_{n}=\exp \left(-\frac{2\left(\widehat{S}_{n+1}-B\right)^{+}\left(\widehat{S}_{n}-B\right)^{+}}{\sigma^{2} \widehat{S}_{n}^{2} h}\right)
$$

For Delta, differentiating these gives (when $\widehat{S}_{n+1}>B$ and $\widehat{S}_{n}>B$)

$$
\begin{aligned}
\frac{\partial \widehat{f}(\widehat{S})}{\partial S_{0}}= & \exp (-r T) s_{T / h}^{(1)} \mathbf{1}_{\widehat{S}_{T / h}-K} \prod_{n}\left(1-P_{n}\right) \\
& -\exp (-r T)\left(\widehat{S}_{T / h}-K\right)^{+} \sum_{n}\left\{\left(\prod_{m \neq n}\left(1-P_{m}\right)\right) \frac{\partial P_{n}}{\partial S_{0}}\right\}
\end{aligned}
$$

with

$$
\frac{\partial P_{n}}{\partial S_{0}}=-\left(\frac{2 s_{n+1}^{(1)}\left(\widehat{S}_{n}-B\right)+2\left(\widehat{S}_{n+1}-B\right) s_{n}^{(1)}}{\sigma^{2} \widehat{S}_{n}^{2} h}-\frac{4 s_{n}^{(1)}\left(\widehat{S}_{n+1}-B\right)\left(\widehat{S}_{n}-B\right)}{\sigma^{2} \widehat{S}_{n}^{3} h}\right) P_{n}
$$

The expression for Vega is similar, with $s_{n}^{(2)}$ instead of $s_{n}^{(1)}$, except that

$$
\begin{aligned}
\frac{\partial P_{n}}{\partial \sigma}=-\left(\frac{2 s_{n+1}^{(2)}\left(\widehat{S}_{n}-B\right)+2\left(\widehat{S}_{n+1}-B\right) s_{n}^{(2)}}{\sigma^{2} \widehat{S}_{n}^{2} h}\right. & -\frac{4 s_{n}^{(2)}\left(\widehat{S}_{n+1}-B\right)\left(\widehat{S}_{n}-B\right)}{\sigma^{2} \widehat{S}_{n}^{3} h} \\
& \left.-\frac{4\left(\widehat{S}_{n+1}-B\right)\left(\widehat{S}_{n}-B\right)}{\sigma^{3} \widehat{S}_{n}^{2} h}\right) P_{n}
\end{aligned}
$$

(b) For the lookback option

$$
\widehat{f}(\widehat{S})=\exp (-r T)\left(\widehat{S}_{T / h}-\min _{n} \widehat{M}_{n}\right)
$$

where

$$
\widehat{M}_{n}=\frac{1}{2}\left(\widehat{S}_{n+1}+\widehat{S}_{n}-\sqrt{\left(\widehat{S}_{n+1}-\widehat{S}_{n}\right)^{2}-2 \sigma^{2} \widehat{S}_{n}^{2} h \log U_{n}}\right)
$$

If we let m be the timestep which gives the minimum (i.e. $\widehat{M}_{m}=\min _{n} \widehat{M}_{n}$) then Delta is given by

$$
\frac{\partial \widehat{f}}{\partial S_{0}}=\exp (-r T)\left(s_{T / h}^{(1)}-\frac{\partial \widehat{M}_{m}}{\partial S_{0}}\right)
$$

where

$$
\frac{\partial \widehat{M}_{m}}{\partial S_{0}}=\frac{1}{2}\left(s_{m+1}^{(1)}+s_{m}^{(1)}-\frac{\left(\widehat{S}_{m+1}-\widehat{S}_{m}\right)\left(s_{m+1}^{(1)}-s_{m}^{(1)}\right)-2 \sigma^{2} \widehat{S}_{m} s_{m}^{(1)} h \log U_{m}}{\sqrt{\left(\widehat{S}_{m+1}-\widehat{S}_{m}\right)^{2}-2 \sigma^{2} \widehat{S}_{m}^{2} h \log U_{m}}}\right)
$$

The expression for Vega is similar, with $s_{n}^{(2)}$ instead of $s_{n}^{(1)}$, except that

$$
\frac{\partial \widehat{M}_{m}}{\partial \sigma}=\frac{1}{2}\left(s_{m+1}^{(2)}+s_{m}^{(2)}-\frac{\left(\widehat{S}_{m+1}-\widehat{S}_{m}\right)\left(s_{m+1}^{(2)}-s_{m}^{(2)}\right)-2\left(\sigma^{2} \widehat{S}_{m}^{(2)} s_{m}+\sigma \widehat{S}_{m}^{2}\right) h \log U_{m}}{\sqrt{\left(\widehat{S}_{m+1}-\widehat{S}_{m}\right)^{2}-2 \sigma^{2} \widehat{S}_{m}^{2} h \log U_{m}}}\right)
$$

