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Problem sheet 3: solutions

1. A Taylor series expansion gives

log(1+ε) = ε− 1
2
ε2 +O(ε3)

and hence

log(1 + r h+ σ∆W ) = r h+ σ∆W − 1
2
σ2 (∆W )2 +O(h3/2)

and therefore
X̂T/h ≈ r T + σW (T )−

∑
n

1
2
σ2 (∆W )2.

The exact solution is
X(T ) = (r− 1

2
σ2)T + σW (T )

and hence the error is

X(T )− X̂T/h ≈
∑
n

1
2
σ2
(
(∆Wn)2 − h)

)
.

Since the (∆Wn)2 are independent with mean h and variance 2h2, the Central
Limit Theorem tells us that in the limit h→ 0 the sum is Normally distributed
with zero mean and variance 1

2
σ4T h.

2. If a = r S, b = σS, the suggested numerical approximation gives

Ŝ
(p)
n+1 = Ŝn(1 + r h+ σ∆Wn)

Ŝn+1 = Ŝn

(
1 + r h+ σ∆Wn + 1

2
r2h2 + r h σ∆Wn + 1

2
σ2(∆Wn)2

)
and following the same approach as in the previous question we find that the
error is

X(T )− X̂T/h ≈
∑
n

− 1
2
σ2 h = − 1

2
σ2 T

3. (a) A bit of a trick question as the Milstein method in this case is the same as
the Euler-Maruyama method since the volatility does not depend on S.

Hence, in this case the Euler method has first order strong convergence,
which explains the numerical results obtained in the last practical.

(b) In this case b′ = 1
2
σS−1/2 and so the Milstein method is

Ŝn+1 = Ŝn + κ (θ−Ŝn)h+ σ

√
Ŝn ∆Wn + 1

4
σ2
(
(∆Wn)2 − h)

)
1



On a practical note: there is a possibility that the numerical method could
lead to Ŝn+1 being negative, in which case the square root becomes a
problem for the next step. This is usually dealt with by modifying the
square root to use √

Ŝ+
n ≡

√
max(Ŝn, 0).

4. The Euler-Maruyama method for Geometric Brownian Motion gives

Ŝn+1 = Ŝn(1 + r h+ σ∆Wn)

If we define

s(1)n =
∂Ŝn

∂S0

, s(2)n =
∂Ŝn

∂σ

then straightforward differentiation yields

s
(1)
n+1 = s(1)n (1 + r h+ σ∆Wn),

s
(2)
n+1 = s(2)n (1 + r h+ σ∆Wn) + Ŝn ∆Wn

with initial data s
(1)
n = 1, s

(2)
n = 0.

Now we have to consider each of the payoffs:

(a) For the barrier option we have

f̂(Ŝ) = exp(−rT ) (ŜT/h −K)+
∏
n

(1− Pn).

with

Pn = exp

(
− 2 (Ŝn+1−B)+ (Ŝn−B)+

σ2 Ŝ2
n h

)
For Delta, differentiating these gives (when Ŝn+1 > B and Ŝn > B)

∂f̂(Ŝ)

∂S0

= exp(−rT ) s
(1)
T/h1ŜT/h−K

∏
n

(1− Pn)

− exp(−rT ) (ŜT/h −K)+
∑
n

{(∏
m 6=n

(1− Pm)

)
∂Pn

∂S0

}
with

∂Pn

∂S0

= −

(
2 s

(1)
n+1 (Ŝn−B) + 2 (Ŝn+1−B) s

(1)
n

σ2 Ŝ2
n h

− 4 s
(1)
n (Ŝn+1−B) (Ŝn−B)

σ2 Ŝ3
n h

)
Pn

The expression for Vega is similar, with s
(2)
n instead of s

(1)
n , except that

∂Pn

∂σ
= −

(
2 s

(2)
n+1 (Ŝn−B) + 2 (Ŝn+1−B) s

(2)
n

σ2 Ŝ2
n h

− 4 s
(2)
n (Ŝn+1−B) (Ŝn−B)

σ2 Ŝ3
n h

− 4 (Ŝn+1−B) (Ŝn−B)

σ3 Ŝ2
n h

)
Pn
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(b) For the lookback option

f̂(Ŝ) = exp(−rT )
(
ŜT/h −min

n
M̂n

)
where

M̂n = 1
2

(
Ŝn+1 + Ŝn −

√
(Ŝn+1−Ŝn)2 − 2σ2 Ŝ2

n h logUn

)
If we let m be the timestep which gives the minimum (i.e. M̂m = minn M̂n)
then Delta is given by

∂f̂

∂S0

= exp(−rT )

(
s
(1)
T/h −

∂M̂m

∂S0

)

where

∂M̂m

∂S0

= 1
2

s(1)m+1 + s(1)m −
(Ŝm+1−Ŝm)(s

(1)
m+1−s

(1)
m )− 2σ2 Ŝms

(1)
m h logUm√

(Ŝm+1−Ŝm)2 − 2σ2 Ŝ2
m h logUm


The expression for Vega is similar, with s

(2)
n instead of s

(1)
n , except that

∂M̂m

∂σ
= 1

2

s(2)m+1 + s(2)m −
(Ŝm+1−Ŝm)(s

(2)
m+1−s

(2)
m )− 2 (σ2 Ŝms

(2)
m + σ Ŝ2

m)h logUm√
(Ŝm+1−Ŝm)2 − 2σ2 Ŝ2

m h logUm
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