
Numerical Methods II
M. Giles

Problem sheet 2: solutions

1. It is unbiased because

E[f(xj)] = N

∫ (j+1)/N

j/N

f(x) dx,

so

E

[
N−1

N−1∑
j=0

f(xj)

]
=

∫ 1

0

f(x), dx.

Since

f(xj) = f

(
j+ 1

2

N

)
+ f ′

(
j+ 1

2

N

)
U − 1

2

N
+ O

(
N−2

)
,

the variance is approximately(
N−1

∑
j

f ′((j + 1
2
)/N)

)2

N−2 V[U ] ≈ 1

12N2

(
f(1)−f(0)

)2
(Note: this is poorer than the O(N−3) variance of stratified sampling.)

2. Choosing d = a/b we get
dYt = c exp(bt) dWt

and hence YT is Normally distributed with mean Y0 = x0−d and variance∫ T

0

c2 exp(2bt) dt =
c2

2b
(exp(2bT )− 1) .

Therefore, XT is also Normally distributed, with mean

µ = d+ exp(−bT )(x0−d)

and variance

σ2 =
c2

2b
(1− exp(−2bT )) .

The p.d.f. is

p =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
,

so

log p = − 1
2

log(2π)− 1
2

log(σ2)− (x− µ)2

2σ2
.
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We then get
∂ log p

∂x0
=
∂ log p

∂µ

∂µ

∂x0
=

(x− µ)

σ2
exp(−bT )

and

∂ log p

∂c
=
∂ log p

∂(σ2)

∂(σ2)

∂c
=

(
− 1

2σ2
+

(x− µ)2

2σ4

)
c

b
(1− exp(−2bT )) .

3. (i) X = Φ−1(U) gives a vector of uncorrelated Normal random variables.

If Y = LX then Y is a vector of Normal random variables with covariance

E[Y Y T ] = E[LX XTLT ] = LE[X XT ]LT = LLT

Hence we need L to be such that LLT = Σ. The simplest definition is to use
a Cholesky factorisation of Σ in which L is lower-triangular.

(ii) In quasi-Monte Carlo simulation we generate quasi-uniform random points
U (n) in the 5D unit hypercube in a way which ensures a much more uniform
coverage than is achieved with pseudo-random points. Examples include
Sobol points and rank-1 lattice rules.

In the best case, the error from an estimate based on N quasi-random points
is O((logN)5N−1), (but I wouldn’t worry too much about the log term)
whereas the Central Limit Theorem gives an O(N−1/2) error for the standard
Monte Carlo estimate using the pseudo-random points.

In randomised QMC, the set of QMC points is randomised as a set (by a
random offset for rank-1 lattice points, or by a random vector bit-wise
exclusive-or operation for Sobol points, but I don’t expect them to give the
details). For each randomisation k, you compute an average Pk, and then
you view the Pk as a collection of random samples in the usual way to obtain
a mean and confidence interval.

(iii) We know that E[Si(T )] = Si(0)erT so the idea with control variates is to use
the unbiased estimator

N−1
∑
n

(
P (U (n))−

5∑
i=1

λi(Si(T )− E[Si(T )])

)

The variance of this estimator is

N−1

(
V[P ]− 2

5∑
i=1

λi cov(P, Si(T )) +
5∑

i,j=1

λi λj cov(Si(T ), Sj(T ))

)

which is minimised by choosing the λi so that∑
j

cov(Si(T ), Sj(T ))λj = cov(P, Si(T )).

This gives a set of 5 equations in 5 unknowns to be solved to give the λi.
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(iv) The standard Monte Carlo estimator uses

N−1
∑
n

P (U (n))

where the U (n) are uniformly distributed over the 5D space (0, 1)5.

If we restrict the components of U to lie within the given ranges, then the
uniform pdf is

5∏
i=1

(ui − li)−1

and so the unbiased Monte Carlo estimator is

N−1
5∏
i=1

(ui − li)
∑
n

P (U (n))

The variance of the standard MC estimator is

E[P 2]− (E[P ])2

where the expectation is over the full (0, 1)5 hypercube.

The variance of the new estimator is

EQ[R2 P 2]− (EQ[RP ])2

where R ≡
∏5

i=1(ui − li) is the Radon-Nikodym derivative and the
expectation is now over the restricted hyper-rectangle.

Since
EQ[RP ] = E[P ]

and
EQ[R2 P 2] = R E[P 2]

the new variance is
R E[P 2]− (E[P ])2

which is less than the original variance.

We can generate Ui by defining it as

Ui = li + Vi(ui − li)

where Vi is a (0, 1) uniform random variable.
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4. (i) CDF is

C(x) =

{
1
2

exp(λx), x < 0

1− 1
2

exp(−λx), x ≥ 0

Given uniformly distributed sample U (n), set

X(n) = C−1(U (n)) =

{
λ−1 log(2U (n)), U (n) < 1/2

−λ−1 log(2−2U (n)) U (n) ≥ 1/2

(ii) Using N independent samples X(n), an estimate of the expected payoff is
given by the sample mean

µ̂ = N−1
∑
n

P (n),

where P (n) ≡ max(S0 exp(X(n))−K, 0).

When N is large, this estimate is asymptotically Normally distributed with
the correct mean, and variance σ2/N where σ is asymptotically equal to the
empirical variance of the sample,

σ̂2 = N−1
∑
n

(
P (n) − µ̂

)2
.

(Comment: σ̂2N/(N − 1) is an unbiased estimator for σ2 but they’re not
required to state this, just that σ̂ → σ as N →∞. In practice, N is so large
that the slight bias is irrelevant.)

Hence, a 99% confidence interval is given by µ̂± c σ̂/
√
N , and c > 0 is a

constant such that
Φ(c)− Φ(−c) = 0.99,

or equivalently (since Φ(c) = 1− Φ(−c)) Φ(c) = 0.995 or Φ(−c) = 0.005,
where Φ(x) is the Normal CDF.

(iii) The pathwise sensitivity with respect to S0 is given by

N−1
∑
n

∂P

∂S

∂S

∂S0

where
∂P

∂S
= 1S>K

and
∂S

∂S0

=
S

S0

.

Similarly, the pathwise sensitivity with respect to λ is given by

N−1
∑
n

∂P

∂S

∂S

∂λ

where
∂S

∂λ
=
∂S

∂X

∂X

∂λ
= S

∂X

∂λ

∣∣∣∣
U

= −S X /λ
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(iv) The probability density functions for X and S are related through

pX dX = pS dS

so

pS = pX
dX

dS
= pX/S =

λ

2
exp(−λ |X|)/S.

Since S/S0 = exp(X) it follows that

pS =

{
λ
2
Sλ−1S−λ0 , S < S0

λ
2
S−λ−1Sλ0 , S ≥ S0

(v) Pathwise sensitivity analysis could not be used in this case because of the
discontinuity in the payoff. Since ∂P/∂S = 0, pathwise sensitivity would give
a value of zero, for any initial asset price S0, which is clearly wrong. (This is
the argument I give in lectures.)

Using LRM, we have the estimate

N−1
∑
n

1S>K
∂(log pS)

∂S0

where
∂(log pS)

∂S0

=

{
−λ/S0, S < S0

+λ/S0, S ≥ S0
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