Numerical Methods 1T
M. Giles

Problem sheet 1: solutions
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Because it has factored into a product of two unit Normal distributions, this
completes the proof that x; and zs are independently distributed with a Normal
distribution with zero mean and unit variance.

. Because the different X,, are independent, we have
0, m#n
E[X,, X,] =

H2, M =mn

where py = E[X?] = V[X]. Looking at the expression for 52, the only terms with
a non-zero expectation are those involving products X,,X,, for m=n. This gives

" N _ _
E[6?] = (m) (NN py — N72N pig) = pao,

proving that o2 is an unbiased estimator.
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(a) When X is a N(0,1) random variable, ps=1 and py=3 so
V[6?] = 2N,

If we assume that for large IV, 52 has an approximately Normal distribution,
then using a +3 standard deviations confidence interval, we want

3V2N-1 = 0.1 = N = 1800.
(b) In this case, ps=2p and py=2p so
V[6?] ~ 2N 'p.
Using a £3 standard deviations confidence interval, we want
3v2N-1p ~ 02p, = N =~450p "

Note that since p < 1, it takes a very large number of samples to get an
accurate estimate of the variance.

The variance of a single sample is

VIf = A(g—Elg]) =~ (h—E[h])]
VIf—Ag—7h]
= V[f] + \*V[g] +7*V[h] — 2X cov(f, g) — 27 cov(f, h) + 2\y cov(g, h)

This quadratic function is a minimum when the derivatives with respect to each
of X\ and v are zero, which requires that

Vigl  covlg,h) \ [ A\ [ cov(f,9)
cov(g,h) V] Y cov(f,h) )
The matrix above is singular when g and h are perfectly correlated; in this case h

is proportional to g and so there is nothing to be gained by including h as a
second control variate.

(a) Let X = ez so x is a standard zero mean unit variance Normal. Then
f(X)= fo+ehz+ %€2f2 z°

where fo=f(0), fi=f'(0), fo=f"(0), and hence the standard estimate

N7 Xy

has variance equal to

NIVIf] ~ N2 f2,
On the other hand,
3 (f(X) + f(=X)) = fo + 3¢* for®
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and so the antithetic variable estimate

N7V () 4 f(=X )

has variance equal to
N7V 5 (F(X) + f(=X))] = iN 7't f2 V[,
We start by noting that

E[f(X)] = E[g(X)] + fo

Next, we observe that
9(X) ~ Le2fra?

and so the main contribution to its expectation comes from the extreme
values of z.

This suggests the use of importance sampling whereby instead of sampling x
from N(0,1) we instead take z from N(0,0?) with o > 1.

Introducing the Radon-Nikodym derivative

r(z) = o(x)/¢o()

which is the ratio of the original and new probability density functions, the
desired expectation is

Elg(X)] = Eo[r(X/e) g(X)].
The optimal choice for ¢ is the one which minimises
Vy[r(z) 27
It can be shown that this also minimises

E[r(z) z4.

This payoff is one-sided, large when X > 0 and small when X < 0, so in
this case it is best to change the mean to move the whole distribution
towards larger X to better sample that tail of the distribution.

The Radon-Nikodym derivative is
r(z) =exp (3(z—p)® — 12°) = exp (—pz + 11°).
The variance of the new estimator is
Volr(x)e’] = Ealr?(2)e*] — (E[r(x)e”])*

where the subscript on the expectation [E; denotes that it is with respect to
the new, shifted distribution.



Since
Eo[r(z) €*] = Eq[e”]
changing 1 does not affect this. Looking instead at the first term,

Eo[r?(z) e®] = Ei[r(z)e™]
= \/%/ exp ((2—p)z + 1p%) exp(—3i2%) d
= \/%/ exp (—5(z—(2—p))* + 34° + 5(2—p)?) dz

= exp (31° + 5(2—1)%)

= exp (/UL2 — 2+ 2)
This is clearly a minimum when p=1.
In this case, r(z) = exp(3 — ) and so r(z) e” = exp(3) which is constant.
Hence, the variance is actually zero in this highly unusual case.
This payoff is two-sided, large in the tails where | X| is large, so in this case it

is best to change the increase the variance to get more samples in both tails
of the distribution.

The Radon-Nikodym derivative is
r(z) =0 exp (—32° + 555 2%) .
The variance of the new estimator is

Volr(z)z?] = Bo[r?(z)2®] — (Ba[r(z)z])?.
Looking again at the first term,
Eo[r®(x)2"] = Eilr(z)a"]

z® exp x2+#x2) dx

L

o 1 s 1,2
= F\/—Q_ﬂ-/—ooy exp(—iy)dy

using the substitution y = Az with \> =2 — 072,

Using integration by parts, it is easily proved that for a unit Normal random
variable vy,
E[y™ "] = (m+1) E[y"]

and hence
1050 105 o

Eo[r®(z) 2"] = N (2—o2)92
Differentiating this, it is found that the minimum is at 02=5, and the
variance for this value is approximately 7.67, compared to the original value
of 105 — 9 = 96 without importance sampling, so in this case importance
sampling reduces the variance, and hence the computational cost of Monte
Carlo sampling, by a factor of approximately 12.5.
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6. In this case we have for the j** stratum,
FU) = FU)+ FUNU=Uy) + 5[ (U)(U=U))* + g /" (U;)(U=U;)* + O((U=Uj)").
Using the antithetic pair the linear and cubic terms cancel and we get
s(FU) + f(Uanir)) = f(U;) + 3" (U)(U=T;)* + O((U~U))").

and so

VIS 0) + FUad) = PP VO-U,) = o (7(0))

Summing over all of the strata, and dividing by N? due to averaging, the variance
of the average is approximately

1
720 N°®
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