
Numerical Methods II
M. Giles

Problem sheet 1: solutions

1. Putting
r =

√
−2 log y1, θ = 2π y2,

then
∂r

∂y1
= − 1

y1r
= −1

r
e
1
2
r2 ,

and hence

det
∂(r, θ)

∂(y1, y2)
= det

(
−1
r
e
1
2
r2 0

0 2π

)
,

and so the probability density for r, θ is

pr,θ =
r

2π
e−

1
2
r2 .

Next, putting
x1 = r cos θ, x2 = r sin θ,

then

det
∂(x1, x2)

∂(r, θ)
= det

(
cos θ −r sin θ
sin θ r cos θ

)
= r,

and so the joint probability density for

px1,x2 =
1

2π
e−

1
2
r2 =

1√
2π

e−
1
2
x21

1√
2π

e−
1
2
x22 .

Because it has factored into a product of two unit Normal distributions, this
completes the proof that x1 and x2 are independently distributed with a Normal
distribution with zero mean and unit variance.

2. Because the different Xn are independent, we have

E[XmXn] =

{
0, m 6= n

µ2, m = n

where µ2 = E[X2] = V[X]. Looking at the expression for σ̂2, the only terms with
a non-zero expectation are those involving products XmXn for m=n. This gives

E[σ̂2] =

(
N

N−1

)(
N−1N µ2 −N−2N µ2

)
= µ2,

proving that σ̂2 is an unbiased estimator.
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(a) When X is a N(0, 1) random variable, µ2 =1 and µ4 =3 so

V[σ̂2] = 2N−1.

If we assume that for large N , σ̂2 has an approximately Normal distribution,
then using a ±3 standard deviations confidence interval, we want

3
√

2N−1 = 0.1 =⇒ N = 1800.

(b) In this case, µ2 =2p and µ4 =2p so

V[σ̂2] ≈ 2N−1p.

Using a ±3 standard deviations confidence interval, we want

3
√

2N−1p ≈ 0.2 p, =⇒ N ≈ 450 p−1.

Note that since p� 1, it takes a very large number of samples to get an
accurate estimate of the variance.

3. The variance of a single sample is

V [f − λ (g−E[g])− γ (h−E[h])]

= V [f − λg − γh]

= V[f ] + λ2V[g] + γ2V[h]− 2λ cov(f, g)− 2γ cov(f, h) + 2λγ cov(g, h)

This quadratic function is a minimum when the derivatives with respect to each
of λ and γ are zero, which requires that(

V[g] cov(g, h)

cov(g, h) V[h]

)(
λ

γ

)
=

(
cov(f, g)

cov(f, h)

)
.

The matrix above is singular when g and h are perfectly correlated; in this case h
is proportional to g and so there is nothing to be gained by including h as a
second control variate.

4. (a) Let X = ε x so x is a standard zero mean unit variance Normal. Then

f(X) ≈ f0 + εf1x+ 1
2
ε2f2 x

2

where f0 =f(0), f1 =f ′(0), f2 =f ′′(0), and hence the standard estimate

N−1
∑
n

f(X(n))

has variance equal to
N−1V[f ] ≈ N−1ε2f 2

1 .

On the other hand,

1
2

(f(X) + f(−X)) ≈ f0 + 1
2
ε2f2x

2
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and so the antithetic variable estimate

N−1
∑
n

1
2

(
f(X(n)) + f(−X(n))

)
has variance equal to

N−1V
[
1
2

(f(X) + f(−X))
]
≈ 1

4
N−1ε4f2V[x2].

(b) We start by noting that

E[f(X)] = E[g(X)] + f0

Next, we observe that
g(X) ≈ 1

2
ε2f2 x

2

and so the main contribution to its expectation comes from the extreme
values of x.

This suggests the use of importance sampling whereby instead of sampling x
from N(0, 1) we instead take x from N(0, σ2) with σ > 1.

Introducing the Radon-Nikodym derivative

r(x) = φ(x)/φσ(x)

which is the ratio of the original and new probability density functions, the
desired expectation is

E[g(X)] = Eσ[r(X/ε) g(X)].

The optimal choice for σ is the one which minimises

Vσ[r(x) x2].

It can be shown that this also minimises

E[r(x) x4].

5. (a) This payoff is one-sided, large when X � 0 and small when X � 0, so in
this case it is best to change the mean to move the whole distribution
towards larger X to better sample that tail of the distribution.

The Radon-Nikodym derivative is

r(x) = exp
(
1
2
(x−µ)2 − 1

2
x2
)

= exp
(
−µx+ 1

2
µ2
)
.

The variance of the new estimator is

V2[r(x)ex] = E2[r
2(x)e2x]− (E2[r(x)ex])2

where the subscript on the expectation E2 denotes that it is with respect to
the new, shifted distribution.
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Since
E2[r(x) ex] = E1[e

x]

changing µ does not affect this. Looking instead at the first term,

E2[r
2(x) e2x] = E1[r(x) e2x]

=
1√
2π

∫ ∞
−∞

exp
(
(2−µ)x+ 1

2
µ2
)

exp(−1
2
x2) dx

=
1√
2π

∫ ∞
−∞

exp
(
−1

2
(x−(2−µ))2 + 1

2
µ2 + 1

2
(2−µ)2

)
dx

= exp
(
1
2
µ2 + 1

2
(2−µ)2

)
= exp

(
µ2 − 2µ+ 2

)
This is clearly a minimum when µ=1.

In this case, r(x) = exp(1
2
− x) and so r(x) ex = exp(1

2
) which is constant.

Hence, the variance is actually zero in this highly unusual case.

(b) This payoff is two-sided, large in the tails where |X| is large, so in this case it
is best to change the increase the variance to get more samples in both tails
of the distribution.

The Radon-Nikodym derivative is

r(x) = σ exp
(
−1

2
x2 + 1

2σ2 x
2
)
.

The variance of the new estimator is

V2[r(x)x4] = E2[r
2(x)x8]−

(
E2[r(x)x4]

)2
.

Looking again at the first term,

E2[r
2(x)x8] = E1[r(x)x8]

=
σ√
2π

∫ ∞
−∞

x8 exp
(
−x2 + 1

2σ2 x
2
)

dx

=
σ

λ9
1√
2π

∫ ∞
−∞

y8 exp(−1
2
y2) dy

using the substitution y = λx with λ2 = 2− σ−2.
Using integration by parts, it is easily proved that for a unit Normal random
variable y,

E[ym+2] = (m+1) E[ym]

and hence

E2[r
2(x)x8] =

105σ

λ9
=

105 σ

(2−σ−2)9/2
.

Differentiating this, it is found that the minimum is at σ2 =5, and the
variance for this value is approximately 7.67, compared to the original value
of 105− 9 = 96 without importance sampling, so in this case importance
sampling reduces the variance, and hence the computational cost of Monte
Carlo sampling, by a factor of approximately 12.5.

4



6. In this case we have for the jth stratum,

f(U) = f(Uj)+f ′(Uj)(U−Uj)+ 1
2
f ′′(Uj)(U−Uj)2 + 1

6
f ′′′(Uj)(U−Uj)3 +O((U−Uj)4).

Using the antithetic pair the linear and cubic terms cancel and we get

1
2
(f(U) + f(Uanti)) = f(Uj) + 1

2
f ′′(Uj)(U−Uj)2 +O((U−Uj)4).

and so

V[1
2
(f(U) + f(Uanti))] ≈ 1

4
(f ′′(Uj))

2V[(U−Uj)2] =
1

720N4
(f ′′(Uj))

2

Summing over all of the strata, and dividing by N2 due to averaging, the variance
of the average is approximately

1

720N5

∫ 1

0

(f ′′(U))
2

dU.
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