Practical 3

1. Look at the Matlab codes lec9_weak.m and lec9_strong.m and make sure that you understand what they are doing - ask if anything is unclear.
2. Starting with lec9_strong.m, try modifying the value of M2 which controls how many paths are computed at a time. Try values of $1,10,100,10^{3}, 10^{4}$, $10^{5}, 10^{6}$. Which is fastest?
(This is known as strip-mining: if $M 2$ is very small the efficiency is poor because of the MATLAB overhead, but if $M 2$ is too large you can lose efficiency because the CPU's cache is not big enough.)
3. Modify lec9_weak.m to estimate the value of call options with strikes of $K=80,90,100,110$ using the same set of path calculations for all of them. Also modify the plots so that each plot has 4 sets of lines corresponding to the 4 call options.
4. Modify lec9_strong.m to simulate the mean-reverting Ornstein-Uhlenbeck process

$$
\mathrm{d} S=\kappa(\theta-S) \mathrm{d} t+\sigma \mathrm{d} W
$$

with $S(0)=100, \theta=110, \kappa=2, \sigma=0.5$. There is no exact solution in this case so just plot the comparison between the h and $2 h$ solutions. What is the order of strong convergence?
5. Modify lec10_weak.m (which generated the plots shown in lecture 10) to improve the weak convergence for both the barrier and lookback options using the methods presented in lecture 10.

