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Greeks

In this lecture we will explore 2 more approaches:

likelihood ratio method

pathwise sensitivities
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Likelihood ratio method

Defining p(S) to the probability density function for the final
state S(T ), then

V = E[f(S(T ))] =

∫

f(S) p(S) dS,

=⇒ ∂V

∂θ
=

∫

f
∂p

∂θ
dS =

∫

f
∂(log p)

∂θ
p dS = E

[

f
∂(log p)

∂θ

]

The quantity
∂(log p)

∂θ
is sometimes called the “score

function”.
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Likelihood ratio method

Note that when f = 1, we get

∂

∂θ
E[1] = 0

and therefore

E

[

∂(log p)

∂θ

]

= 0

This is a handy check to make sure we have derived the
score function correctly.
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Likelihood ratio method

Example: GBM with arbitrary payoff f(S(T )).

For the usual Geometric Brownian motion with constants
r, σ, the final log-normal probability distribution is

p(S) =
1

Sσ
√
2πT

exp

[

−1
2

(

log(S/S0)− (r − 1
2σ

2)T

σ
√
T

)2
]

log p = − log S−log σ−1
2 log(2πT )−1

2

(

log(S/S0)− (r − 1
2σ

2)T
)2

σ2T

=⇒ ∂ log p

∂S0
=

log(S/S0)− (r − 1
2σ

2)T

S0σ2T
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Likelihood ratio method

Hence

∆ = E

[

log(S/S0)− (r − 1
2σ

2)T

S0 σ2T
f(S(T ))

]

In the Monte Carlo simulation,

log(S/S0)− (r − 1
2σ

2)T = σW (T )

so the expression can be simplified to

∆ = E

[

W (T )

S0 σ T
f(S(T ))

]

– very easy to implement so you estimate ∆ at the same
time as estimating the price V
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Likelihood ratio method

Similarly for vega we have

∂ log p

∂σ
= − 1

σ
− log(S/S0)− (r − 1

2σ
2)T

σ

+

(

log(S/S0)− (r − 1
2σ

2)T
)2

σ3T

and hence

vega = E

[(

1

σ

(

W (T )2

T
− 1

)

−W (T )

)

f(S(T ))

]
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Likelihood ratio method

In both cases, the variance is very large when σ is small,
and it is also large for ∆ when T is small.

More generally, LRM is usually the approach with the
largest variance.
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Likelihood ratio method

To get second derivatives, note that

∂2 log p

∂θ2
=

∂

∂θ

(

1

p

∂p

∂θ

)

=
1

p

∂2p

∂θ2
− 1

p2

(

∂p

∂θ

)2

=⇒ 1

p

∂2p

∂θ2
=

∂2 log p

∂θ2
+

(

∂ log p

∂θ

)2

and hence

∂2V

∂θ2
= E

[(

∂2 log p

∂θ2
+

(

∂ log p

∂θ

)2
)

f(S(T ))

]
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Likelihood ratio method

In the multivariate extension, X = log S(T ) can be written as

X = µ+ LZ

where µ is the mean vector, Σ=LLT is the covariance
matrix and Z is a vector of uncorrelated Normals. The joint
p.d.f. is

log p = −1
2 log |Σ| − 1

2(X−µ)TΣ−1(X−µ)− 1
2d log(2π).

and after a lot of algebra we obtain

∂ log p

∂µ
= L−TZ,

∂ log p

∂Σ
= 1

2 L
−T
(

ZZT−I
)

L−1
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Pathwise sensitivities

Start instead with

V ≡ E [f(S(T ))] =

∫

f(S(T )) pW (W ) dW

and differentiate this to get

∂V

∂θ
=

∫

∂f

∂S

∂S(T )

∂θ
pW dW = E

[

∂f

∂S

∂S(T )

∂θ

]

with ∂S(T )/∂θ being evaluated at fixed W .

Note: this derivation needs f(S) to be differentiable, but by
considering the limit of a sequence of smoothed
(regularised) functions can prove it’s OK provided f(S) is
continuous and piecewise differentiable
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Pathwise sensitivities

This leads to the estimator

1

N

N
∑

i=1

∂f

∂S
(S(i))

∂S(i)

∂θ

which is the derivative of the usual price estimator

1

N

N
∑

i=1

f(S(i))

Gives incorrect estimates when f(S) is discontinuous.

e.g. for digital put
∂f

∂S
= 0 so estimated value of Greek is

zero – clearly wrong.
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Pathwise sensitivities

Extension to second derivatives is straightforward

∂2V

∂θ2
=

∫

{

∂2f

∂S2

(

∂S(T )

∂θ

)2

+
∂f

∂S

∂2S(T )

∂θ2

}

pW dW

= E

[

∂2f

∂S2

(

∂S(T )

∂θ

)2

+
∂f

∂S

∂2S(T )

∂θ2

]

with ∂2S(T )/∂θ2 also being evaluated at fixed W .

However, this requires f(S) to have a continuous first
derivative – a problem in practice
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Pathwise sensitivities

Extension to multivariate case is straightforward

Sk(T ) = Sk(0) exp

(

(r− 1
2σ

2
k
)T +

∑

l

LklXl

)

so

log Sk(T ) = log Sk(0) + (r− 1
2σ

2
k
)T +

∑

l

LklXl

and hence

1

Sk(T )

∂Sk(T )

∂θ
=

1

Sk(0)

∂Sk(0)

∂θ
− σk

∂σk
∂θ

T +
∑

l

∂Lkl

∂θ
Xl
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Pathwise sensitivities

To handle payoffs which do not have the necessary
continuity/smoothness one can modify the payoff

For digital options it is common to use a piecewise linear
approximation to limit the magnitude of ∆ near maturity
– avoids large transaction costs

Bank selling the option will price it conservatively
(i.e. over-estimate the price)
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Pathwise sensitivities

The standard call option definition can be smoothed by
integrating the smoothed Heaviside function

Hε(S−K) = Φ

(

S−K

ε

)

with ε ≪ K, to get

f(S) = (S−K) Φ

(

S−K

ε

)

+
ε√
2π

exp

(

− (S−K)2

2 ε2

)

This will allow the calculation of Γ and other second
derivatives
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Final Words

Estimating Greeks is an important task:

LRM can handle discontinuous payoffs, but a little
complicated for multivariate case, and will see next term
that it doesn’t extend well to path-dependent options

pathwise sensitivity is usually the best approach
(simplest, lowest variance and least cost) when it is
applicable – needs continuous payoff for first derivatives

payoff smoothing can be used to make pathwise
approach applicable to discontinuous payoffs and for
second derivatives

alternatively, combine pathwise sensivity with finite
differences for second derivatives – e.g. use pathwise
to compute ∆, then finite difference this to get Γ
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