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Greeks

In Monte Carlo applications we don’t just want to know the
expected discounted value of some payoff

V = E[f(S(T ))]

We also want to know a whole range of “Greeks”
corresponding to first and second derivatives of V with
respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.
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Greeks

The Greeks are needed for hedging and risk analysis.

Whereas prices can be obtained to some extent from
market prices, simulation is the only way to determine the
Greeks.

In the next two lectures we will explore 3 approaches:

finite differences

likelihood ratio method (lecture 8)

pathwise sensitivities (lecture 8)
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Finite difference sensitivities

If V (θ) = E[f(S(T ))] for an input parameter θ is sufficiently

differentiable, then the sensitivity
∂V

∂θ
can be approximated

by one-sided finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ)

∆θ
+ O(∆θ)

or by central finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ−∆θ)

2∆θ
+ O((∆θ)2)

(This approach is referred to as getting Greeks by
“bumping” the input parameters.)

MC Lecture 7 – p. 4



Finite difference sensitivities

The clear advantage of this approach is that it is very
simple to implement (hence the most popular in practice?)

However, the disadvantages are:

expensive (2 extra sets of calculations for central
differences)

significant bias error if ∆θ too large

machine roundoff errors if ∆θ too small

large variance if f(S(T )) discontinuous and ∆θ small
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Finite difference sensitivities

Let X(i)(θ+∆θ) and X(i)(θ−∆θ) be the values of f(S(T ))
obtained for different MC samples, so the central difference

estimate for
∂V

∂θ
is given by

Ŷ =
1

2∆θ

(
N−1

N∑

i=1

X(i)(θ+∆θ)−N−1
N∑

i=1

X(i)(θ−∆θ)

)

=
1

2N∆θ

N∑

i=1

(
X(i)(θ+∆θ)−X(i)(θ−∆θ)

)
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Finite difference sensitivities

If independent samples are taken for both X(i)(θ+∆θ) and

X(i)(θ−∆θ) then

V[Ŷ ] ≈
(

1

2N∆θ

)2∑

j

(
V[X(θ+∆θ)] +V[X(θ−∆θ)]

)

≈
(

1

2N∆θ

)2

2N V[f ]

=
V[f ]

2N(∆θ)2

which is very large for ∆θ ≪ 1.
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Finite difference sensitivities

It is much better for X(i)(θ+∆θ) and X(i)(θ−∆θ) to use the
same set of random inputs.

If X(i)(θ) is differentiable with respect to θ, then

X(i)(θ+∆θ)−X(i)(θ−∆θ) ≈ 2∆θ
∂X(i)

∂θ

and hence

V[Ŷ ] ≈ N−1
V

[
∂X

∂θ

]
,

which behaves well for ∆θ ≪ 1, so one should choose a
small (but not ridiculously small) value for ∆θ to minimise
the bias due to the finite differencing.
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Basket call option

5 underlying assets starting at S0 = 100, with call option
on arithmetic mean with strike K = 100

Geometric Brownian Motion model, r = 0.05, T = 1

volatility σ = 0.2 and correlation matrix

Ω =




1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1

0.1 0.1 1 0.1 0.1

0.1 0.1 0.1 1 0.1

0.1 0.1 0.1 0.1 1




The aim is to estimate
∂

∂S0
E[exp(−rT ) f(ST )] where f(ST ) is

the basket call option payoff, using central differences.
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Basket call option
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Basket call option
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Finite difference sensitivities

Next, we analyse the variance of the finite difference
estimator when the payoff is discontinuous.

The problem is that a small bump in the asset S can
produce a big bump in the payoff – not differentiable

✲

✻

①

①

K S

P
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Finite difference sensitivities

What is the probability that S(θ ±∆θ) will be on different
sides of the discontinuity?

Separation of S(θ ±∆θ) is O(∆θ)

P( |S(θ)−K| < c∆θ) = O(∆θ)

Hence, O(∆θ) probability of straddling the strike.
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Finite difference sensitivities

If we are interested in E[f(ω)], and samples ω are either in
set A, or its complement Ac, then

E[f(ω)] = E[f(ω)1A] + E[f(ω)1Ac ]

= P(ω∈A) E[f(ω) | ω∈A]

+ P(ω /∈A) E[f(ω) | ω /∈A]

and similarly

E[f2(ω)] = P(ω∈A) E[f2(ω) | ω∈A]

+ P(ω /∈A) E[f2(ω) | ω /∈A]
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Finite difference sensitivities

In this case of a discontinuous payoff

For most samples, X(i)(θ+∆θ)−X(i)(θ−∆θ) = O(∆θ)

For an O(∆θ) fraction, X(i)(θ+∆θ)−X(i)(θ−∆θ) = O(1)

=⇒ E

[
X(i)(θ+∆θ)−X(i)(θ−∆θ)

2∆θ

]
= O(1)

E

[(
X(i)(θ+∆θ)−X(i)(θ−∆θ)

2∆θ

)2
]

= O(∆θ−1)

This gives E[Ŷ ] = O(1), but V[Ŷ ] = O(N−1∆θ−1).
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Finite difference sensitivities

So, small ∆θ gives a large variance, while a large ∆θ gives
a large finite difference discretisation error.

To determine the optimum choice we use the following

result: if Ŷ is an estimator for E[Y ] then

E

[(
Ŷ − E[Y ]

)2]
= E

[(
Ŷ −E[Ŷ ] + E[Ŷ ]−E[Y ]

)2]

= E

[
(Ŷ −E[Ŷ ])2

]
+ (E[Ŷ ]−E[Y ])2

= V[Ŷ ] +
(
E[Ŷ ]−E[Y ]

)2

Mean Square Error = variance + (bias)2

MC Lecture 7 – p. 16



Finite difference sensitivities

In our case, the MSE (mean-square-error) is

V[Ŷ ] + bias2 ∼ a

N ∆θ
+ b∆θ4.

This is minimised by choosing ∆θ ∝ N−1/5, giving

√
MSE ∝ N−2/5

in contrast to the usual MC result in which
√

MSE ∝ N−1/2
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Finite difference sensitivities

Second derivatives such as Γ can also be approximated by
central differences:

∂2V

∂θ2
=

V (θ+∆θ)− 2V (θ) + V (θ−∆θ)

∆θ2
+ O(∆θ2)

This will again have a larger variance if either the payoff or
its derivative is discontinuous.
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Finite difference sensitivities

Discontinuous payoff: ✲

✻

✉ ✉

✉

For an O(∆θ) fraction of samples

X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ) = O(1)

=⇒ E

[(
X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ)

∆θ2

)2
]
= O(∆θ−3)

This gives V[Ŷ ] = O(N−1∆θ−3).
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Finite difference sensitivities

Discontinuous derivative: ✲

✻

✘✘✘✘✘✘✘✘✘

✉ ✉
✉

For an O(∆θ) fraction of samples

X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ) = O(∆θ)

=⇒ E

[(
X(i)(θ+∆θ)− 2X(i)(θ) +X(i)(θ−∆θ)

∆θ2

)2
]
= O(∆θ−1)

This gives V[Ŷ ] = O(N−1∆θ−1).
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Finite difference sensitivities

Hence, for second derivatives the variance of the finite
difference estimator is

O(N−1) if the payoff is twice differentiable

O(N−1∆θ−1) if the payoff has a discontinuous derivative

O(N−1∆θ−3) if the payoff is discontinuous

These can be used to determine the optimum ∆θ in each
case to minimise the Mean Square Error.
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Final Words

estimating Greeks is an important task, often more
important than estimating the prices

finite differences are simplest approach, but least
accurate and most expensive

always use the same random numbers for both sets of
simulations

in some cases, the optimum step size is a tradeoff
between variance and bias (due to finite difference
discretisation error)
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