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Variance Reduction

Monte Carlo starts as a very simple method; much of the
complexity in practice comes from trying to reduce the
variance, to reduce the number of samples that have to be
simulated to achieve a given accuracy.

antithetic variables (lecture 3)

control variates (lecture 3)

importance sampling (lecture 3)

stratified sampling

Latin hypercube

quasi-Monte Carlo (lecture 5)
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Stratified Sampling

The key idea is to achieve a more regular sampling of the
most “important” dimension in the uncertainty.

Start by considering a one-dimensional problem:

I =

∫

1

0

f(U) dU.

Instead of taking N samples, drawn from uniform
distribution on [0, 1], instead break the interval into M strata
of equal width and take L samples from each.
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Stratified Sampling

Define Uij to be the value of ith sample from strata j,

F j = L−1
∑

i

f(Uij) = average from strata j,

F = M−1
∑

j

F j = overall average

and similarly let

µj = E[f(U) |U ∈ strata j],

σ2j = V[f(U) |U ∈ strata j],

µ = E[f ],

σ2 = V[f ].
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Stratified Sampling

With stratified sampling,

E[F ] = M−1
∑

j

E[F j ] = M−1
∑

j

µj = µ

so it is unbiased.

The variance is

V[F ] = M−2
∑

j

V[F j ] = M−2L−1
∑

j

σ2j

= N−1M−1
∑

j

σ2j

where N = LM is the total number of samples.
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Stratified Sampling

Without stratified sampling, V[F ] = N−1σ2 with

σ2 = E[f2]− µ2

= M−1
∑

j

E[f(U)2 |U ∈ strata j] − µ2

= M−1
∑

j

(µ2j + σ2j ) − µ2

= M−1
∑

j

(

(µj−µ)2 + σ2j
)

≥ M−1
∑

j

σ2j

Thus stratified sampling reduces the variance.
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Stratified Sampling

How do we use this for MC simulations?

For a one-dimensional application:

Break [0, 1] into M strata

For each stratum, take L samples U with uniform
probability distribution

Define X = Φ−1(U) and use this for W (T )

Compute average within each stratum, and overall
average.
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Stratified Sampling

Test case: European call

r=0.05, σ=0.5, T =1, S0=110, K=100, N=104 samples

M L MC error bound

1 10000 1.39

10 1000 0.55

100 100 0.21

1000 10 0.07
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Application

MATLAB code:

for M = [1 10 100 1000]

L = N/M; ave=0; var=0;

for m = 1:M

U = (m-1+rand(1,L))/M;

Y = norminv(U);

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

ave1 = sum(F)/L;

var1 = (sum(F.ˆ2)/L - ave1ˆ2)/(L-1);

ave = ave + ave1/M;

var = var + var1/Mˆ2;

end

end
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Stratified Sampling

Sub-dividing a stratum always reduces the variance, so the
optimum choice is to use 1 sample per stratum

However, need multiple samples in each stratum to
estimate the variance and obtain a confidence interval.

This tradeoff between efficiency and confidence/reliability
happens in other contexts – e.g. QMC in next lecture

Despite this, interesting to analyse what happens with
1 sample per stratum.
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Stratified Sampling

For jth stratum, if f(U) is differentiable then

f(U) ≈ f(Uj) + f ′(Uj) (U−Uj)

where Uj is midpoint of stratum, and hence

V[f(U) |U ∈ stratum j] ≈
(

f ′(Uj)
)2

V[U−Uj |U ∈ stratum j]

=
1

12N2

(

f ′(Uj)
)2

since the stratum has width
1

N
.
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Stratified Sampling

Summing all of the variances (due to independence)

and dividing by N2 (due to averaging) the variance of
the average over all strata is then

1

12N4

∑

j

(

f ′(Uj)
)2

≈
1

12N3

∫

(

f ′(U)
)2

dU

so the r.m.s. error is O(N−3/2), provided f ′(U) is square
integrable.

This is much better than the usual O(N−1/2) r.m.s. error
– shows how powerful stratified sampling can be.
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Stratified Sampling

This analysis suggest another improvement – since the
function is almost linear within each stratum, it is a
near-ideal situation in which to use antithetic variables.

For each sample point, take a second which is mirror image
within that stratum.

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
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Stratified Sampling

So far, have assumed an equal number of samples in each
stratum. If we now take Lj samples in stratum j, the overall
variance is

M−2
∑

j

L−1

j σ2j .

Using a Lagrange multiplier to minimise this while holding
fixed the total number of samples

∑

j

Lj

leads to the optimal choice

Lj ∝ σj
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Stratified Sampling

Hence, it is best to use more samples for strata with high
variability.

σj is usually not known beforehand, but one can use a

small number of pilot runs to estimate σj and choose Lj.

Important to throw away the results from the pilot runs and
not use them in the final estimate – otherwise can introduce
a bias into the results.
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Stratified Sampling

For a multivariate application, one approach is to:

Break [0, 1] into M strata

For each stratum, take L samples U with uniform
probability distribution

Define X1 = Φ−1(U)

Simulate other elements of X using standard Normal
random number generation

Multiply X by matrix C to get Y = CX with desired
covariance

Compute average within each stratum, and overall
average
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Stratified Sampling

The effectiveness of this depends on a good choice of C.

Ideally, want the function f(Y ) to depend solely on the value
of X1 so it reduces to a one-dimensional application.

Not easy in practice, requires good insight or a complex
optimisation, so instead generalise stratified sampling
approach to multiple dimensions.
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Stratified Sampling

For a d-dimensional application, can split each dimension of

the [0, 1]d hypercube into M strata producing Md sub-cubes.

One generalisation of stratified sampling is to generate L

points in each of these hypercubes

However, the total number of points is LMd which for large
d would force M to be very small in practice.

Instead, use a method called Latin Hypercube sampling
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Latin Hypercube

Generate M points, dimension-by-dimension, using 1D
stratified sampling with 1 value per stratum, assigning them
randomly to the M points to give precisely one point in each
stratum

✉

✉

✉

✉
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Latin Hypercube

This gives one set of M points, with average

f = M−1

M
∑

m=1

f(Um)

Since each of the points Um is uniformly distributed over the
hypercube,

E[f ] = E[f ]

The fact that the points are not independently generated
does not affect the expectation, only the (reduced) variance
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Latin Hypercube

We now take L independently-generated set of points, each

giving an average f l.

Averaging these

L−1

L
∑

l=1

f l

gives an unbiased estimate for E[f ], and the empirical

variance for f l gives a confidence interval in the usual way.
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Latin Hypercube

Note: in the special case in which the function f(U) is a
sum of one-dimensional functions:

f(U) =
∑

i

fi(Ui)

where Ui is the ith component of U , then Latin Hypercube
sampling reduces to 1D stratified sampling in each
dimension.

In this case, potential for very large variance reduction by
using large sample size M .

Much harder to analyse in general case.
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Final comments

Stratified sampling is very effective in 1D, but not so
clear how to use it in multiple dimensions

Latin Hypercube is one generalisation – very effective
when function can be decomposed into a sum of 1D
functions

Hard to predict which variance reduction approach will
be most effective

Advice: when facing a new class of applications, try
each one, and don’t forget you can sometimes combine
different techniques
(e.g. stratified sampling with antithetic variables, or
Latin Hypercube with importance sampling)
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