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Variance Reduction

Monte Carlo starts as a very simple method; much of the
complexity in practice comes from trying to reduce the
variance, to reduce the number of samples that have to be
simulated to achieve a given accuracy.

antithetic variables

control variates

importance sampling

stratified sampling (lecture 4)

Latin hypercube (lecture 4)

quasi-Monte Carlo (lecture 5)
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Review of elementary results

If a, b are random variables, and λ, µ are constants, then

E[a+ µ] = E[a] + µ

V[a+ µ] = V[a]

E[λ a] = λ E[a]

V[λ a] = λ2V[a]

E[a+ b] = E[a] + E[b]

V[a+ b] = V[a] + 2Cov[a, b] +V[b]

where

V[a] ≡ E

[
(a− E[a])2

]
= E

[
a2
]
− (E[a])2

Cov[a, b] ≡ E

[
(a− E[a]) (b− E[b])

]
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Review of elementary results

If a, b are independent random variables then

E[f(a) g(b)] = E[f(a)] E[g(b)]

Hence, Cov[a, b] = 0 and therefore V[a+ b] = V[a] +V[b]

Extending this to a set of N iid (independent identically
distributed) r.v.’s xn, we have

V

[
N∑

n=1

xn

]
=

N∑

n=1

V[xn] = N V[x]

and so

V

[
N−1

N∑

n=1

xn

]
= N−1

V[x]
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Antithetic variables

The simple estimator from the last lecture has the form

N−1
∑

i

f(W (i))

where W (i) is the value of the random Weiner variable
W (T ) at maturity.

W (T ) has a symmetric probability distribution so
−W (T ) is just as likely.
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Antithetic variables

Antithetic estimator replaces f(W (i)) by

f
(i)

= 1
2

(
f(W (i)) + f(−W (i))

)

Clearly still unbiased since

E[f ] = 1
2

(
E[f(W )] + E[f(−W )]

)
= E[f(W )]

The variance is given by

V[f ] = 1
4

(
V[f(W )] + 2Cov[f(W ), f(−W )] +V[f(−W )]

)

= 1
2

(
V[f(W )] + Cov[f(W ), f(−W )]

)
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Antithetic variables

The variance is always reduced, but the cost is almost
doubled, so net benefit only if Cov[f(W ), f(−W )] < 0.

Two extremes:

A linear payoff, f = a+ bW , is integrated exactly since

f=a and Cov[f(W ), f(−W )] = −V[f ]

A symmetric payoff f(W ) = f(−W ) is the worst case
since Cov[f(W ), f(−W )] = V[f ]

General assessment – usually not very helpful, but can be
good in particular cases where the payoff is nearly linear
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Control Variates

Suppose we want to approximate E[f ] using a simple

Monte Carlo average f .

If there is another payoff g for which we know E[g], can use

g − E[g] to reduce error in f − E[f ].

How? By defining a new estimator

f̂ = f − λ (g−E[g])

Again unbiased since E[f̂ ] = E[f ] = E[f ]
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Control Variates

For a single sample,

V[f − λ (g−E[g])] = V[f ]− 2λCov[f, g] + λ2V[g]

For an average of N samples,

V[f − λ (g−E[g])] = N−1
(
V[f ]− 2λCov[f, g] + λ2V[g]

)

To minimise this, the optimum value for λ is

λ =
Cov[f, g]

V[g]
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Control Variates

The resulting variance is

N−1
V[f ]

(
1− (Cov[f, g])2

V[f ]V[g]

)
= N−1

V[f ]
(
1− ρ2

)

where ρ is the correlation between f and g.

The challenge is to choose a good g which is well
correlated with f – the covariance, and hence the optimal λ,
can be estimated from the data.
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Control Variates

Possible choices:

for European call option (ignoring its known value)
could use g = S since exp(−rt) S(t) is a martingale:

E[S(T )] = exp(rT ) S(0)

for a general European payoff f(S) could use a
combination of put and call options

More opportunities for path-dependent options – will
discuss next term. The idea can also be taken further using
multiple control variates.

General assessment – can be very effective, depending on
the application
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Application

MATLAB code, part 1 – estimating optimal λ:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1000;

U = rand(1,N); % uniform random variable

Y = norminv(U); % inverts Normal cum. fn.

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

C = exp(-r*T)*S;

Fave = sum(F)/N;

Cave = sum(C)/N;

lam = sum((F-Fave).*(C-Cave)) / sum((C-Cave).ˆ2);
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Application

MATLAB code, part 2 – control variate estimation:

N = 1e5;

U = rand(1,N); % uniform random variable

Y = norminv(U); % inverts Normal cum. fn.

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

C = exp(-r*T)*S;

F2 = F - lam*(C-S0);

Fave = sum(F)/N;

F2ave = sum(F2)/N;

sd = sqrt( sum((F -Fave ).ˆ2)/(N*(N-1)) )

sd2 = sqrt( sum((F2-F2ave).ˆ2)/(N*(N-1)) )
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Application

Results:

>>> lec3

sd =

0.0599

sd2 =

0.0151

est. price (no CV) = 17.676995 +/- 0.179683

est. price (with CV) = 17.659708 +/- 0.045310

exact price = 17.662954
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Importance Sampling

Importance sampling involves a change of probability
measure. Instead of taking X from a distribution with
p.d.f. p1(X), we instead take it from a different distribution
with p.d.f. p2(X).

E1[f(X)] =

∫
f(X) p1(X) dX

=

∫
f(X)

p1(X)

p2(X)
p2(X) dX

= E2[f(X) R(X)]

where R(X) = p1(X)/p2(X) is the Radon-Nikodym
derivative.
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Importance Sampling

We want the new variance V2[f(X) R(X)] to be smaller
than the old variance V1[f(X)].

How do we achieve this? Ideal is to make f(X)R(X)
constant, so its variance is zero.

More practically, make R(X) small where f(X) is large, and
make R(X) large where f(X) is small.

Small R(X) ⇐⇒ large p2(X) relative to p1(X), so more
random samples in region where f(X) is large.

Particularly important for rare event simulation where f(X)
is zero almost everywhere.
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Importance Sampling

Really simple rare event example: suppose random variable
X takes value 1 with probability δ ≪ 1 and is otherwise 0.

E[X] = δ

V[X] = E[X2]− (E[X])2 = δ − δ2

Hence, √
V[X]

E[X]
=

√
1−δ

δ
≈

√
1

δ

If we want the relative error to be less than ε, the number of
samples required is O(ε−2δ−1).
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Importance Sampling

Digital put option:

P = exp(−rT ) H(K − S(T )) = exp(−rT ) H(logK − logS(T ))

where

X = logS(T ) = log S(0) + (r− 1
2σ

2)T + σW (T )

is Normally distributed with p.d.f.

φ1(X) =
1√

2πσ2T
exp

(
−(x−µ)2

2σ2T

)

with µ = log S(0) + (r− 1
2σ

2)T .
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Importance Sampling

A digital put option with very low strike (e.g. K = 0.4 S(0))
is sometimes used as a hedge for credit derivatives.

If the stock price falls that much, there is a strong possibility
of credit default.

Problem: this is a rare event. The probability that S(T ) < K
can be very low, maybe less than 1%, leading to a very high
r.m.s. error relative to the true price.

Solution: importance sampling, adjusting either mean or
volatility
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Importance Sampling

Approach 1: change the mean from µ1 to µ2 < µ1 by using

X = µ2 + σW (T )

The Radon-Nikodym derivative is

R(X) = exp

(
−(X−µ1)

2

2σ2T

)
/ exp

(
−(X−µ2)

2

2σ2T

)

= exp

(
(X− 1

2(µ1+µ2))(µ1−µ2)

σ2T

)

> 1 for X > 1
2(µ1+µ2)

< 1 for X < 1
2(µ1+µ2)

Choosing µ2=logK means half of samples are below logK
with very small R(X) =⇒ large variance reduction
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Importance Sampling

Approach 2: change the volatility from σ1 to σ2 > σ1 by using

X = µ+ σ2W (T )

The Radon-Nikodym derivative is

R(X) = σ−1
1 exp

(
−(X−µ)2

2σ21T

)
/σ−1

2 exp

(
−(X−µ)2

2σ22T

)

=
σ2
σ1

exp

(
−(X−µ)2(σ22−σ21)

2σ21σ
2
2T

)

> 1 for small |X−µ|
≪ 1 for large |X−µ|

This is good for applications where both tails are important
– not as good in this application.
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Final Words

antithetic variables – generic and easy to implement but
limited effectiveness

control variates – easy to implement and can be very
effective but requires careful choice of control variate in
each case

importance sampling – very useful for applications with
rare events, but needs to be fine-tuned for each
application

Overall, a tradeoff between simplicity and generality on one
hand, and efficiency and programming effort on the other.
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