Numerical Methods II

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Expectation and Integration

If x is a random variable uniformly distributed on $[0,1]$ then the expectation of a function $f(x)$ is equal to its integral:

$$
\bar{f}=\mathbb{E}[f(x)]=I[f]=\int_{0}^{1} f(x) \mathrm{d} x .
$$

The generalisation to a d-dimensional "cube" $I^{d}=[0,1]^{d}$, is

$$
\bar{f}=\mathbb{E}[f(x)]=I[f]=\int_{I^{d}} f(x) \mathrm{d} x .
$$

Thus the problem of finding expectations in finance is directly connected to the problem of numerical quadrature (integration), often in very large dimensions.

Expectation and Integration

Suppose we have a sequence x_{n} of independent samples from the uniform distribution.

An approximation to the expectation/integral is given by

$$
I_{N}[f]=N^{-1} \sum_{n=1}^{N} f\left(x_{n}\right) .
$$

Two key features:

- Unbiased:

$$
\mathbb{E}\left[I_{N}[f]\right]=I[f]
$$

- Convergent:

$$
\lim _{N \rightarrow \infty} I_{N}[f]=I[f]
$$

Expectation and Integration

In general, define

- error $\varepsilon_{N}(f)=I[f]-I_{N}[f]$
- bias $=\mathbb{E}\left[\varepsilon_{N}(f)\right]$
- RMSE, "root-mean-square-error" $=\sqrt{\mathbb{E}\left[\left(\varepsilon_{N}(f)\right)^{2}\right]}$

The Central Limit Theorem proves that for large N

$$
\varepsilon_{N}(f) \sim \sigma N^{-1 / 2} Z
$$

with Z a $N(0,1)$ random variable and σ^{2} the variance of f :

$$
\sigma^{2}=\mathbb{E}\left[(f-\bar{f})^{2}\right]=\int_{I^{d}}(f(x)-\bar{f})^{2} \mathrm{~d} x .
$$

Expectation and Integration

More precisely, provided σ is finite, then as $N \longrightarrow \infty$,

$$
\operatorname{CDF}\left(N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right) \longrightarrow \operatorname{CDF}(Z)
$$

so that

$$
\mathbb{P}\left[N^{1 / 2} \sigma^{-1} \varepsilon_{N}<s\right] \rightarrow \mathbb{P}[Z<s]=\Phi(s)
$$

and

$$
\begin{aligned}
& \mathbb{P}\left[\left|N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right|>s\right] \rightarrow \mathbb{P}[|Z|>s]=2 \Phi(-s) \\
& \mathbb{P}\left[\left|N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right|<s\right] \rightarrow \mathbb{P}[|Z|<s]=1-2 \Phi(-s)
\end{aligned}
$$

Expectation and Integration

Given N samples, the empirical variance is

$$
\widetilde{\sigma}^{2}=N^{-1} \sum_{n=1}^{N}\left(f\left(x_{n}\right)-I_{N}\right)^{2}=I_{N}^{(2)}-\left(I_{N}\right)^{2}
$$

where

$$
I_{N}=N^{-1} \sum_{n=1}^{N} f\left(x_{n}\right), \quad I_{N}^{(2)}=N^{-1} \sum_{n=1}^{N}\left(f\left(x_{n}\right)\right)^{2}
$$

$\tilde{\sigma}^{2}$ is a slightly biased estimator for σ^{2}; an unbiased estimator is

$$
\widehat{\sigma}^{2}=(N-1)^{-1} \sum_{n=1}^{N}\left(f\left(x_{n}\right)-I_{N}\right)^{2}=\frac{N}{N-1}\left(I_{N}^{(2)}-\left(I_{N}\right)^{2}\right)
$$

Expectation and Integration

Objective: want an accuracy of $\bar{\varepsilon}$ with confidence c. i.e. $|\varepsilon|<\bar{\varepsilon}$ with probability c.

How many samples do we need to use?
Recall,

$$
\mathbb{P}\left[N^{1 / 2} \sigma^{-1}|\varepsilon|<s\right] \approx 1-2 \Phi(-s),
$$

so define function $s(c)$ such that

$$
1-2 \Phi(-s)=c \Longleftrightarrow s=-\Phi^{-1}((1-c) / 2)
$$

Expectation and Integration

c	0.683	0.9545	0.9973	0.99994
s	1.0	2.0	3.0	4.0

Then $|\varepsilon|<N^{-1 / 2} \sigma s(c)$ with probability c, so to get $|\varepsilon|<\bar{\varepsilon}$ we can put

$$
N^{-1 / 2} \widehat{\sigma} s(c)=\bar{\varepsilon} \quad \Longrightarrow \quad N=\left(\frac{\widehat{\sigma} s(c)}{\bar{\varepsilon}}\right)^{2} .
$$

Note: twice as much accuracy requires 4 times as many samples.

Expectation and Integration

How does Monte Carlo integration compare to grid based methods for d-dimensional integration?

MC error is proportional to $N^{-1 / 2}$ independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with $M=N^{1 / d}$ points in each direction has

$$
\text { Error } \propto M^{-2}=N^{-2 / d}
$$

This scales better than MC for $d<4$, but worse for $d>4$. i.e. MC is better at handling high dimensional problems.

Applications

Geometric Brownian motion for single asset:

$$
S(T)=S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W(T)\right)
$$

$W(T)$ has a Normal distribution with mean 0 , variance T; from this we will calculate the risk-neutral expectation for

$$
V=\mathbb{E}[f(S(T))]
$$

Applications

We can put

$$
W(T)=\sqrt{T} Y=\sqrt{T} \Phi^{-1}(U)
$$

where Y is a $N(0,1)$ random variable, and U is uniformly distributed on $[0,1]$.
Thus

$$
V=\mathbb{E}[f(S(T))]=\int_{0}^{1} f(S(T)) \mathrm{d} U,
$$

with

$$
\begin{aligned}
S(T) & =S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Y\right) \\
& =S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} \Phi^{-1}(U)\right)
\end{aligned}
$$

Applications

For the European call option,

$$
f(S)=\exp (-r T)(S-K)^{+}
$$

while for the European put option

$$
f(S)=\exp (-r T)(K-S)^{+}
$$

where K is the strike price.
For numerical experiments we will consider a European call with $\quad r=0.05, \quad \sigma=0.2, \quad T=1, \quad S_{0}=110, \quad K=100$.

The analytic value is known for comparison.

Applications

MC Lecture $2-\mathrm{p} .13$

Applications

MC calculation with up to 10^{6} paths; true value $=17.663$

MC Lecture $2-\mathrm{p} .14$

Applications

The upper and lower bounds are given by

$$
\text { Mean } \pm \frac{3 \widetilde{\sigma}}{\sqrt{N}}
$$

so more than a 99.7\% probability that the true value lies within these bounds.

Applications

MATLAB code:

```
r=0.05; sig=0.2; T=1; S0=110; K=100;
N = 1:1000000;
U = rand(1,max(N)); % uniform random variable
Y = norminv(U); % inverts Normal cum. fn.
S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);
F = exp(-r*T)*max (0,S-K);
sum1 = cumsum(F); % cumulative summation of
sum2 = cumsum(F.^2); % payoff and its square
val = sum1./N;
rms = sqrt(sum2./N - val.^2);
```


Applications

```
err = european_call(r,sig,T,SO,K,'value') - val;
plot(N,err,
    N,err-3*rms./sqrt(N),
    N,err+3*rms./sqrt(N))
axis([0 length(N) -1 1])
xlabel('N'); ylabel('Error')
legend('MC error','lower bound','upper bound')
```


Applications

New application: basket option
European call for arithmetic average of M stocks which are correlated so that

$$
\mathrm{d} S_{i}=r S_{i} \mathrm{~d} t+\sigma_{i} S_{i} \mathrm{~d} W_{i}
$$

with the different $\mathrm{d} W_{i}$ not independent.
As before, get

$$
S_{i}(T)=S_{i}(0) \exp \left(\left(r-\frac{1}{2} \sigma_{i}^{2}\right) T+\sigma_{i} W_{i}(T)\right)
$$

Applications

If $\sigma_{i} W_{i}(T)$ have covariance matrix Σ, then use Cholesky factorisation $L L^{T}=\Sigma$ to get

$$
S_{i}(T)=S_{i}(0) \exp \left(\left(r-\frac{1}{2} \sigma_{i}^{2}\right) T+\sum_{j} L_{i j} Y_{j}\right)
$$

where Y_{j} are independent $N(0,1)$ random variables.
Each Y_{i} can in turn be expressed as $\Phi^{-1}\left(U_{i}\right)$ where the U_{i} are uniformly, and independently, distributed on $[0,1]$.

Applications

The payoff is

$$
f=\exp (-r T)\left(\frac{1}{M} \sum_{i} S_{i}-K\right)^{+}
$$

and so the expectation can be written as the M-dimensional integral

$$
\int_{I^{M}} f(U) \mathrm{d} U
$$

This is a good example for Monte Carlo simulation - cost scales linearly with the number of stocks, whereas it would be exponential for grid-based numerical integration.

Final Words

- Monte Carlo quadrature is straightforward and robust
- Confidence bounds can be obtained as part of the calculation
- Can calculate the number of samples N needed for chosen accuracy
- Much more efficient than grid-based methods for high dimensions
- Accuracy $=O\left(N^{-1 / 2}\right)$, CPU time $=O(N)$
\Longrightarrow accuracy $=O\left(\right.$ CPU time $\left.^{-1 / 2}\right)$
$\Longrightarrow \quad$ CPU time $=O\left(\right.$ accuracy $\left.^{-2}\right)$

