
Numerical Methods II

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

MC Lecture 2 – p. 1

Expectation and Integration

If x is a random variable uniformly distributed on [0, 1] then
the expectation of a function f(x) is equal to its integral:

f = E[f(x)] = I[f] =

∫ 1

0

f(x) dx.

The generalisation to a d-dimensional “cube” Id = [0, 1]d, is

f = E[f(x)] = I[f] =

∫

Id
f(x) dx.

Thus the problem of finding expectations in finance is
directly connected to the problem of numerical quadrature
(integration), often in very large dimensions.

MC Lecture 2 – p. 2

Expectation and Integration

Suppose we have a sequence xn of independent samples
from the uniform distribution.

An approximation to the expectation/integral is given by

IN [f] = N−1
N∑

n=1

f(xn).

Two key features:

Unbiased: E
[
IN [f]

]
= I[f]

Convergent: lim
N→∞

IN [f] = I[f]

MC Lecture 2 – p. 3

Expectation and Integration

In general, define

error εN (f) = I[f]− IN [f]

bias = E[εN (f)]

RMSE, “root-mean-square-error” =
√
E[(εN (f))2]

The Central Limit Theorem proves that for large N

εN (f) ∼ σ N−1/2Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = E[(f − f)2] =

∫

Id

(
f(x)− f

)2
dx.

MC Lecture 2 – p. 4

Expectation and Integration

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN) −→ CDF(Z)

so that

P

[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and

P

[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z| > s] = 2 Φ(−s)

P

[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z| < s] = 1− 2 Φ(−s)

MC Lecture 2 – p. 5

Expectation and Integration

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(f(xn)− IN)2 = I
(2)
N − (IN)2

where

IN = N−1
N∑

n=1

f(xn), I
(2)
N = N−1

N∑

n=1

(f(xn))
2

σ̃2 is a slightly biased estimator for σ2; an unbiased
estimator is

σ̂2 = (N−1)−1
N∑

n=1

(f(xn)− IN)2 =
N

N−1

(
I
(2)
N − (IN)2

)

MC Lecture 2 – p. 6

Expectation and Integration

Objective: want an accuracy of ε with confidence c.
i.e. |ε| < ε with probability c.

How many samples do we need to use?

Recall,

P

[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

so define function s(c) such that

1− 2 Φ(−s) = c ⇐⇒ s = −Φ−1((1−c)/2)

MC Lecture 2 – p. 7

Expectation and Integration

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

Then |ε| < N−1/2 σ s(c) with probability c, so to get |ε| < ε
we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many
samples.

MC Lecture 2 – p. 8

Expectation and Integration

How does Monte Carlo integration compare to grid based
methods for d-dimensional integration?

MC error is proportional to N−1/2 independent of the
dimension.

If the integrand is sufficiently smooth, trapezoidal

integration with M = N1/d points in each direction has

Error ∝ M−2 = N−2/d

This scales better than MC for d < 4, but worse for d > 4.
i.e. MC is better at handling high dimensional problems.

MC Lecture 2 – p. 9

Applications

Geometric Brownian motion for single asset:

S(T) = S0 exp
(
(r − 1

2σ
2)T + σW (T)

)

W (T) has a Normal distribution with mean 0, variance T ;
from this we will calculate the risk-neutral expectation for

V = E
[
f(S(T))

]

MC Lecture 2 – p. 10

Applications

We can put

W (T) =
√
T Y =

√
T Φ−1(U)

where Y is a N(0, 1) random variable, and U is uniformly
distributed on [0, 1].

Thus

V = E [f(S(T))] =

∫ 1

0

f(S(T)) dU,

with

S(T) = S0 exp
(
(r − 1

2σ
2)T + σ

√
T Y

)

= S0 exp
(
(r − 1

2σ
2)T + σ

√
T Φ−1(U)

)

MC Lecture 2 – p. 11

Applications

For the European call option,

f(S) = exp(−rT) (S−K)+

while for the European put option

f(S) = exp(−rT) (K−S)+

where K is the strike price.

For numerical experiments we will consider a European call
with r=0.05, σ = 0.2, T =1, S0=110, K=100.

The analytic value is known for comparison.

MC Lecture 2 – p. 12

Applications

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140
Discounted payoff

U

MC Lecture 2 – p. 13

Applications

MC calculation with up to 106 paths; true value = 17.663

0 2 4 6 8 10

x 10
5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N

E
rr

or

MC error
lower bound
upper bound

MC Lecture 2 – p. 14

Applications

The upper and lower bounds are given by

Mean± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies
within these bounds.

MC Lecture 2 – p. 15

Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1:1000000;

U = rand(1,max(N)); % uniform random variable

Y = norminv(U); % inverts Normal cum. fn.

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.ˆ2); % payoff and its square

val = sum1./N;

rms = sqrt(sum2./N - val.ˆ2);

MC Lecture 2 – p. 16

Applications

err = european_call(r,sig,T,S0,K,’value’) - val;

plot(N,err, ...

N,err-3*rms./sqrt(N), ...

N,err+3*rms./sqrt(N))

axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’)

legend(’MC error’,’lower bound’,’upper bound’)

MC Lecture 2 – p. 17

Applications

New application: basket option

European call for arithmetic average of M stocks which are
correlated so that

dSi = r Si dt+ σiSidWi

with the different dWi not independent.

As before, get

Si(T) = Si(0) exp
(
(r − 1

2σ
2
i)T + σiWi(T)

)

MC Lecture 2 – p. 18

Applications

If σiWi(T) have covariance matrix Σ, then use Cholesky

factorisation LLT = Σ to get

Si(T) = Si(0) exp


(r − 1

2σ
2
i)T +

∑

j

LijYj




where Yj are independent N(0, 1) random variables.

Each Yi can in turn be expressed as Φ−1(Ui) where the Ui

are uniformly, and independently, distributed on [0, 1].

MC Lecture 2 – p. 19

Applications

The payoff is

f = exp(−rT)

(
1

M

∑

i

Si −K

)+

and so the expectation can be written as the
M -dimensional integral

∫

IM
f(U) dU.

This is a good example for Monte Carlo simulation – cost
scales linearly with the number of stocks, whereas it would
be exponential for grid-based numerical integration.

MC Lecture 2 – p. 20

Final Words

Monte Carlo quadrature is straightforward and robust

Confidence bounds can be obtained as part of the
calculation

Can calculate the number of samples N needed for
chosen accuracy

Much more efficient than grid-based methods for high
dimensions

Accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)

MC Lecture 2 – p. 21

	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Expectation and Integration
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Applications
	Final Words

