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Expectation and Integration

If x is a random variable uniformly distributed on [0, 1] then
the expectation of a function f(x) is equal to its integral:

f = E[f(x)] = I[f ] =

∫ 1

0

f(x) dx.

The generalisation to a d-dimensional “cube” Id = [0, 1]d, is

f = E[f(x)] = I[f ] =

∫

Id
f(x) dx.

Thus the problem of finding expectations in finance is
directly connected to the problem of numerical quadrature
(integration), often in very large dimensions.
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Expectation and Integration

Suppose we have a sequence xn of independent samples
from the uniform distribution.

An approximation to the expectation/integral is given by

IN [f ] = N−1
N∑

n=1

f(xn).

Two key features:

Unbiased: E
[
IN [f ]

]
= I[f ]

Convergent: lim
N→∞

IN [f ] = I[f ]
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Expectation and Integration

In general, define

error εN (f) = I[f ]− IN [f ]

bias = E[εN (f)]

RMSE, “root-mean-square-error” =
√
E[(εN (f))2]

The Central Limit Theorem proves that for large N

εN (f) ∼ σ N−1/2Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = E[(f − f)2] =

∫

Id

(
f(x)− f

)2
dx.

MC Lecture 2 – p. 4



Expectation and Integration

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN ) −→ CDF(Z)

so that

P

[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and

P

[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z| > s] = 2 Φ(−s)

P

[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z| < s] = 1− 2 Φ(−s)
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Expectation and Integration

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(f(xn)− IN )2 = I
(2)
N − (IN )2

where

IN = N−1
N∑

n=1

f(xn), I
(2)
N = N−1

N∑

n=1

(f(xn))
2

σ̃2 is a slightly biased estimator for σ2; an unbiased
estimator is

σ̂2 = (N−1)−1
N∑

n=1

(f(xn)− IN )2 =
N

N−1

(
I
(2)
N − (IN )2

)
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Expectation and Integration

Objective: want an accuracy of ε with confidence c.
i.e. |ε| < ε with probability c.

How many samples do we need to use?

Recall,

P

[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

so define function s(c) such that

1− 2 Φ(−s) = c ⇐⇒ s = −Φ−1((1−c)/2)
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Expectation and Integration

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

Then |ε| < N−1/2 σ s(c) with probability c, so to get |ε| < ε
we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many
samples.

MC Lecture 2 – p. 8



Expectation and Integration

How does Monte Carlo integration compare to grid based
methods for d-dimensional integration?

MC error is proportional to N−1/2 independent of the
dimension.

If the integrand is sufficiently smooth, trapezoidal

integration with M = N1/d points in each direction has

Error ∝ M−2 = N−2/d

This scales better than MC for d < 4, but worse for d > 4.
i.e. MC is better at handling high dimensional problems.
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Applications

Geometric Brownian motion for single asset:

S(T ) = S0 exp
(
(r − 1

2σ
2)T + σW (T )

)

W (T ) has a Normal distribution with mean 0, variance T ;
from this we will calculate the risk-neutral expectation for

V = E
[
f(S(T ))

]
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Applications

We can put

W (T ) =
√
T Y =

√
T Φ−1(U)

where Y is a N(0, 1) random variable, and U is uniformly
distributed on [0, 1].

Thus

V = E [f(S(T ))] =

∫ 1

0

f(S(T )) dU,

with

S(T ) = S0 exp
(
(r − 1

2σ
2)T + σ

√
T Y

)

= S0 exp
(
(r − 1

2σ
2)T + σ

√
T Φ−1(U)

)
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Applications

For the European call option,

f(S) = exp(−rT ) (S−K)+

while for the European put option

f(S) = exp(−rT ) (K−S)+

where K is the strike price.

For numerical experiments we will consider a European call
with r=0.05, σ = 0.2, T =1, S0=110, K=100.

The analytic value is known for comparison.
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Applications
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Applications

MC calculation with up to 106 paths; true value = 17.663
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Applications

The upper and lower bounds are given by

Mean± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies
within these bounds.
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Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1:1000000;

U = rand(1,max(N)); % uniform random variable

Y = norminv(U); % inverts Normal cum. fn.

S = S0*exp((r-sigˆ2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.ˆ2); % payoff and its square

val = sum1./N;

rms = sqrt(sum2./N - val.ˆ2);
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Applications

err = european_call(r,sig,T,S0,K,’value’) - val;

plot(N,err, ...

N,err-3*rms./sqrt(N), ...

N,err+3*rms./sqrt(N))

axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’)

legend(’MC error’,’lower bound’,’upper bound’)
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Applications

New application: basket option

European call for arithmetic average of M stocks which are
correlated so that

dSi = r Si dt+ σiSidWi

with the different dWi not independent.

As before, get

Si(T ) = Si(0) exp
(
(r − 1

2σ
2
i )T + σiWi(T )

)
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Applications

If σiWi(T ) have covariance matrix Σ, then use Cholesky

factorisation LLT = Σ to get

Si(T ) = Si(0) exp


(r − 1

2σ
2
i )T +

∑

j

LijYj




where Yj are independent N(0, 1) random variables.

Each Yi can in turn be expressed as Φ−1(Ui) where the Ui

are uniformly, and independently, distributed on [0, 1].
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Applications

The payoff is

f = exp(−rT )

(
1

M

∑

i

Si −K

)+

and so the expectation can be written as the
M -dimensional integral

∫

IM
f(U) dU.

This is a good example for Monte Carlo simulation – cost
scales linearly with the number of stocks, whereas it would
be exponential for grid-based numerical integration.
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Final Words

Monte Carlo quadrature is straightforward and robust

Confidence bounds can be obtained as part of the
calculation

Can calculate the number of samples N needed for
chosen accuracy

Much more efficient than grid-based methods for high
dimensions

Accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)
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