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Multilevel Monte Carlo

new approach to achieving greater accuracy for the
same computational cost

builds on the elements we’ve already learned

incorporates ideas from the numerical solution of PDEs

an illustration of the fact that this subject is not mature
– there’s still plenty of scope for improvement on
existing methods
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt+ b(S, t) dW (t)

For simple European options, we want to compute the
expected value of an option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U)− f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Simplest estimator for expected payoff is an average of N
independent path simulations:

Ŷ = N−1
N∑

i=1

P̂ (i)

where P̂ ≡ f(ŜT/h) is an approximation to P ≡ f(S(T ))

for a given Brownian path W (t).
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Standard MC Approach

The mean square error is defined as

E

[(
Ŷ − E[P ]

)2
]

= E

[(
Ŷ −E[P̂ ] + E[P̂ ]−E[P ]

)2
]

= E

[
(Ŷ −E[P̂ ])2

]
+ (E[P̂ ]−E[P ])2

= N−1
V[P̂ ] +

(
E[P̂ ]−E[P ]

)2

first term is due to variance of estimator

second term is due to bias due to finite timestep
– weak convergence
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Standard MC Approach

Weak convergence:

error in the expected value, E[P̂ ]−E[P ]

most important error in most applications

O(h) for the Euler discretisation

Strong convergence:

error in path approximation√
E

[∥∥∥ŜT/h − S(T )
∥∥∥
2
]

or

√
E

[
max
0<t<T

∥∥∥Ŝ(t)− S(t)
∥∥∥
2
]

usually not relevant, but important for multilevel method

O(h1/2) for the Euler discretisation
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Standard MC Approach

Combined mean-square-error is O(N−1 + h2).

To make this equal to ε2 requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−2(log ε)2

)
, by combining

simulations with different numbers of timesteps – same
accuracy as finest calculations, but at a much lower
computational cost.
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Multilevel MC Approach

Consider multiple sets of simulations with different

timesteps hℓ = 2−ℓ T, ℓ = 0, 1, . . . , L, and payoff P̂ℓ

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂ℓ−P̂ℓ−1] using Nℓ simulations

with P̂ℓ and P̂ℓ−1 obtained using same Brownian path.

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂

(i)
ℓ −P̂

(i)
ℓ−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

ℓ=0

Ŷℓ

]
=

L∑

ℓ=0

N−1
ℓ Vℓ, Vℓ ≡ V[P̂ℓ−P̂ℓ−1],

and the computational cost is proportional to

L∑

ℓ=0

Nℓ h
−1
ℓ .

Hence, by using a Lagrange multiplier, the computational
cost is minimised for a fixed variance by choosing Nℓ to be

proportional to
√

Vℓ hℓ.

The constant of proportionality can be chosen so that the

combined variance is O(ε2).
MC Lecture 14 – p. 10



Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

∣∣∣P̂ − P

∣∣∣ ≤ c

∥∥∥ŜT/h − S(T )
∥∥∥ =⇒ V[P̂ℓ−P ] = O(hℓ)

Also, if c = a− b then

√
V[c] ≤

√
V[a] +

√
V[b]

and so, putting

P̂ℓ−P̂ℓ−1 = (P̂ℓ−P )− (P̂ℓ−1−P )

it follows that

V[P̂ℓ−P̂ℓ−1] = O(hℓ)
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Multilevel MC Approach

Hence, the optimal Nℓ is asymptotically proportional to hℓ,

and to make the combined variance O(ε2) requires

Nℓ = O(ε−2Lhℓ).

To make the bias O(ε) requires

L = log2 ε
−1 +O(1) =⇒ hL = O(ε).

Hence, we obtain an ε2 MSE for a computational cost which

is O(ε−2L2) = O(ε−2(log ε)2).
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Results

Geometric Brownian motion:

dS = r S dt+ σ S dW, 0 < t < T,

T =1, S(0)=1, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with K=1.

Numerical calculations use factor 4 incease in number of
timesteps at each level.
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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MLMC Results

GBM: lookback call, exp(−rT ) (S(T )−min
t

S(t))
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MLMC Results

GBM: lookback call, exp(−rT ) (S(T )−min
t

S(t))
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Extensions: I

Use of Milstein method:

better strong convergence than Euler-Maruyama
method

able to achieve O(ε−2) cost for

digital options

barrier options

lookback options

for multi-factor SDEs needs approximate Lévy areas

still active research area

in some cases, can neglect Lévy areas and use an
antithetic “trick” to get good multilevel variance
without O(h) strong convergence
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Extensions: II

Use of Sobol points or rank-1 lattice rule for MLQMC:

Milstein method leads to most computational effort on
coarsest levels

QMC is particularly effective at coarsest levels

QMC doesn’t provide much benefits at finer levels, but
overall benefits are very significant
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Extensions: III

Current research is on nested simulations relevant to
Value-at-Risk (VaR) or Conditional Value-at-Risk (CVaR).

Given underlying risk factors Y , VaR is the loss level Lα

such P[L>Lα |Y ] = α for some small probability α.

CVaR is then E[L−Lα |L>Lα] = α−1E[(L−Lα)
+].

The complication is that the loss itself is a risk-neutral
expected value – this gives a nested expectation of the form

E [g (E[f(X,Y )|Y ])]

In the simplest multilevel treatment, level ℓ uses 2ℓ inner
samples for the conditional expectation.
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Other Work

numerical analysis (D. Higham, X. Mao – Strathclyde)

adaptive time-stepping (R. Tempone – KAUST)

Greeks for hedging and risk management (S. Burgos)

exponential Lévy processes (Y. Xia)

multidimensional SDEs without Lévy areas
(L. Szpruch – Edinburgh)

various techniques for handling digital options

SPDEs (C. Reisinger)

applications to lots of other stochastic models in
physics, engineering, biochemistry

See my webpages for details
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Conclusions

Results:

much improved order of complexity

fairly easy to implement

significant benefits for lots of model problems

However:

still lots of scope for further developments
(e.g. current research on risk analysis)

still not taken up by banks, perhaps because they are
not yet convinced savings are big enough?
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