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Estimating Greeks

Finite differences can again be used to estimate Greeks,
with all of the advantages/disadvantages discussed in
lectures 7 & 8.

We will now look at the extensions of

Likelihood Ratio Method (LRM)

pathwise sensitivity method

for path simulations.

To understand details and efficiency, will compare how each
is used to estimate Vega for Geometric Brownian Motion
with European payoff.
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Likelihood Ratio Method

Reminder of lecture 8: defining p(S) to be the p.d.f. for the
final state S(T ), then

V = E[f(S(T ))] =

∫
f(S) p(S) dS,

Dependence on input parameters (e.g. σ) comes in through
p.d.f. p(S) and so

=⇒ ∂V

∂θ
=

∫
f
∂p

∂θ
dS =

∫
f
∂(log p)

∂θ
p dS = E

[
f
∂(log p)

∂θ

]
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Likelihood Ratio Method

For Geometric Brownian Motion,

log p = − log S−log σ−1

2
log(2πT )−1

2

(
log(S/S0)− (r − 1

2
σ2)T

)2

σ2 T

=⇒ ∂(log p)

∂σ
= − 1

σ
− log(S/S0)− (r − 1

2
σ2)T

σ

+

(
log(S/S0)− (r − 1

2
σ2)T

)2

σ3 T

=
Z2 − 1

σ
−
√
T Z

where Z is the unit Normal defined by

log(S/S0)− (r − 1

2
σ2)T = σ

√
T Z
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Likelihood Ratio Method

Hence,

Vega = E

[(
Z2−1

σ
−
√
T Z

)
f(S(T ))

]

Note that this correctly gives zero for f(S) ≡ 1

useful check when using LRM

could also use
Z2−1

σ
−

√
T Z as a control variate
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Likelihood Ratio Method

Extending this to a SDE path simulation with M timesteps,
with the payoff a function purely of the discrete states Ŝn,
we have the M -dimensional integral

V = E[f̂(Ŝ)] =

∫
f̂(Ŝ) p(Ŝ) dŜ,

where dŜ ≡ dŜ1 dŜ2 dŜ3 . . . dŜM

and p(Ŝ) is the product of the p.d.f.s for each timestep

p(Ŝ) =
∏

n

pn(Ŝn+1|Ŝn)

log p(Ŝ) =
∑

n

log pn(Ŝn+1|Ŝn)
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Likelihood Ratio Method

For the Euler-Maruyama approximation of Geometric
Brownian Motion,

log pn = − log Ŝn− log σ− 1

2
log(2πh)− 1

2

(
Ŝn+1 − Ŝn(1+r h)

)2

σ2 Ŝ2
n h

=⇒ ∂(log pn)

∂σ
= − 1

σ
+

(
Ŝn+1 − Ŝn(1+r h)

)2

σ3 Ŝ2
n h

=
Z2
n − 1

σ

where Zn is the unit Normal defined by

Ŝn+1 − Ŝn(1+r h) = σ Ŝn

√
hZn
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Likelihood Ratio Method

Hence, the approximation of Vega is

∂

∂σ
E[f(ŜM )] = E

[(
∑

n

Z2
n−1

σ

)
f(ŜM )

]

Note that again this gives zero for f(S) ≡ 1.

Note also that V[Z2
n − 1] = 2 and therefore

V

[(
∑

n

Z2
n−1

σ

)
f(ŜM )

]
= O(M) = O(T/h)

This O(h−1) blow-up is the great drawback of the LRM.
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Pathwise Sensitivity

Reminder of lecture 8: defining p(W ) to be the p.d.f. for the
driving Brownian motion W (T ), then

V = E[f(S(T ))] =

∫
f(S(T )) p(W ) dW

and so differentiating gives

∂V

∂θ
=

∫
∂f

∂S

∂S(T )

∂θ
p dW = E

[
∂f

∂S

∂S(T )

∂θ

]

with ∂S(T )/∂θ being evaluated at fixed W .
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Pathwise Sensitivity

To allow for possibility of calculating sensitivity to changes
in correlation, better to start with integral with respect to unit
Normal Z:

V = E[f(S(T ))] =

∫
f(S(T )) φ(Z) dZ

where φ(Z) is unit Normal p.d.f.

Differentiation then gives

∂V

∂θ
= E

[
∂f

∂S

∂S(T )

∂θ

]

with ∂S(T )/∂θ being evaluated at fixed Z.
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Pathwise Sensitivity

In the multiple dimensional GBM case,

Si(T ) = Si(0) exp((r − 1

2
σ2i )T + σi

√
T (LZ)i)

where LLT is the correlation matrix for dW , and the
components of Z are i.i.d. unit Normals.

Hence for vega, we have

∂Si

∂σi

∣∣∣∣
Z

= Si(T )
(
− σiT +

√
T (LZ)i

)
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Pathwise Sensitivity

The extension to SDE path simulations is quite natural, with

V = E[f̂(Ŝ)] =

∫
f̂(Ŝ(Z)) φ(Z) dZ

where dZ ≡ dZ0 dZ1 dZ2 . . . dZM−1 and φ(Z) is the

product of the unit Normal p.d.f.’s φ(Z) =
∏

n

φ(Zn)

Differentiation then gives

∂V

∂θ
= E

[
∂f̂

∂Ŝ

∂Ŝ

∂θ

]

with ∂Ŝ/∂θ being evaluated at fixed Z.
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Pathwise Sensitivity

For a scalar GBM, defining ŝn ≡ ∂Ŝn

∂σ
then differentiating the

initial data Ŝ0 = S(0) gives ŝ0 = 0, and differentiating

Ŝn+1 = Ŝn (1 + r h+ σ
√
hZn)

gives

ŝn+1 = ŝn (1 + r h+ σ
√
hZn) + Ŝn

√
hZn

and then

Vega = E

[
∂f̂

∂ŜM

ŝM

]
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Pathwise Sensitivity

As h → 0,

ŝM → ∂S(T )

∂σ

so the approximate path sensitivity tends to the true value,
and hence both the expectation and variance of

∂f̂

∂ŜM

ŝM

converge to the expectation and variance of

∂f

∂S

∂S(T )

∂σ

Thus, there is no variance “blow-up”.

MC Lecture 12 – p. 14



Pathwise Sensitivity

The big limitation of the pathwise sensitivity approach is
that it requires that the payoff is continuous and piecewise
differentiable.

One practical “solution” is to use a continuous piecewise
linear approximation:

a pair of put or call options, one long and one short

under-estimate or over-estimate, depending whether
buying or selling the option

also limits the magnitude of Delta close to maturity,
which limits the transaction costs
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Pathwise Sensitivity
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Call with strike K=80, minus call with strike K=100
gives over-estimate of digital option with strike K=100
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Final words

LRM and pathwise sensitivity approaches both extend
to SDE path simulations

weakness of LRM is the blow-up in the variance as
h → 0

weakness of pathwise sensitivity approach is the
requirement that the payoff be continuous

payoff smoothing is often used in practice

alternatively, there is research on hybrid methods
which combine the strengths of both approaches
(Malliavin calculus, “vibrato” Monte Carlo)

for computational efficiency, can use adjoint
implementation of pathwise sensitivity to get all first
order Greeks for same cost as original simulation
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