Numerical Methods II

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Euler-Maruyama method

For the vector SDE

$$
\mathrm{d} S=a(S, t) \mathrm{d} t+b(S, t) \mathrm{d} W
$$

the Euler-Maruyama approximation is again

$$
\widehat{S}_{n+1}=\widehat{S}_{n}+a\left(\widehat{S}_{n}, t_{n}\right) h+b\left(\widehat{S}_{n}, t_{n}\right) \Delta W_{n}
$$

but now $a(S, t)$ is a vector, $b(S, t)$ is a matrix and ΔW_{n} is a vector of Brownian increments with a prescribed correlation.

Remember: can define $\Delta W_{n}=L Z_{n}$ where elements of Z_{n} are i.i.d. unit Normals and

$$
L L^{T}=\operatorname{Cov}\left(\Delta W_{n}\right)
$$

Euler-Maruyama method

Provided a and b are Lipschitz continuous in S :

- $O(h)$ weak convergence
- $O(\sqrt{h})$ strong convergence

Theoretical result (Clark \& Cameron, 1980) proves this is the best strong convergence that can be achieved in the general vector case based solely on Brownian increments ΔW_{n}.

However, can do better in the scalar case, and also in the vector case in special cases or if we have additional information about the driving Brownian motion

Milstein Method

Start with scalar case:

$$
\mathrm{d} S=a(S, t) \mathrm{d} t+b(S, t) \mathrm{d} W
$$

which corresponds to the integral equation:

$$
S(t)=S(0)+\int_{0}^{t} a(S(t), t) \mathrm{d} t+\int_{0}^{t} b(S(t), t) \mathrm{d} W(t)
$$

where second integral is an Itô integral.
Approximating this on interval $[0, h]$ using

$$
a(S(t), t) \approx a(S(0), 0), \quad b(S(t), t) \approx b(S(0), 0)
$$

gives Euler-Maruyama method.

Milstein Method

An asymptotic expansion gives

$$
S(t)=S(0)+b(S(0), 0) W(t)+O(h)
$$

and hence

$$
\begin{aligned}
b(S(t), t)) & =b(S(0), 0)+b^{\prime}(S(0), 0)(S(t)-S(0))+O(h) \\
& =b(S(0), 0)+b^{\prime}(S(0), 0) b(S(0), 0) W(t)+O(h)
\end{aligned}
$$

This then leads to
$S(h)=S(0)+a_{0} h+b_{0} W(h)+b_{0}^{\prime} b_{0} \int_{0}^{h} W(t) \mathrm{d} W(t)+O\left(h^{3 / 2}\right)$
where $a_{0}, b_{0}, b_{0}^{\prime}$ are all evaluated at $(S(0), 0)$.

Milstein Method

With a standard Lebesgue integral we would say

$$
\int_{0}^{h} W(t) \mathrm{d} W(t)=\int_{0}^{h} \mathrm{~d}\left(\frac{1}{2} W^{2}(t)\right)=\frac{1}{2} W^{2}(h)
$$

but that would be wrong here!
Instead we must use Itô calculus to give

$$
\mathrm{d}\left(\frac{1}{2} W^{2}\right)=W(t) \mathrm{d} W(t)+\frac{1}{2} \mathrm{~d} t
$$

and hence

$$
\int_{0}^{h} W(t) \mathrm{d} W(t)=\frac{1}{2}\left(W^{2}(h)-h\right)
$$

Milstein Method

This then gives us

$$
S(h)=S(0)+a_{0} h+b_{0} W(h)+\frac{1}{2} b_{0}^{\prime} b_{0}\left(W^{2}(h)-h\right)+O\left(h^{3 / 2}\right)
$$

and so the Milstein scheme is

$$
\begin{aligned}
\widehat{S}_{n+1}= & \widehat{S}_{n}+a\left(\widehat{S}_{n}, t_{n}\right) h+b\left(\widehat{S}_{n}, t_{n}\right) \Delta W_{n} \\
& +\frac{1}{2} b^{\prime}\left(\widehat{S}_{n}, t_{n}\right) b\left(\widehat{S}_{n}, t_{n}\right)\left(\Delta W_{n}^{2}-h\right)
\end{aligned}
$$

Note that $\mathbb{E}\left[\Delta W_{n}^{2}-h\right]=0, \quad \mathbb{V}\left[\Delta W_{n}^{2}-h\right]=2 h^{2}$
so the r.m.s. effect of extra "Milstein term" after T / h timesteps is $O(\sqrt{h})$, correcting the $O(\sqrt{h})$ error of the Euler-Maruyama method.

Strong convergence

Numerical demonstration: Geometric Brownian Motion

$$
\begin{aligned}
& \mathrm{d} S=r S \mathrm{~d} t+\sigma S \mathrm{~d} W \\
& r=0.05, \sigma=0.5, T=1
\end{aligned}
$$

Strong convergence

MC Lecture 11 -p. 9

Strong convergence

Milstein Method

In the vector case, the SDE

$$
\mathrm{d} S_{i}=a_{i}(S, t) \mathrm{d} t+\sum_{j} b_{i j}(S, t) \mathrm{d} W_{j}
$$

corresponds to the integral equation:

$$
S_{i}(t)=S_{i}(0)+\int_{0}^{t} a_{i}(S(t), t) \mathrm{d} t+\sum_{j} \int_{0}^{t} b_{i j}(S(t), t) \mathrm{d} W_{j}(t)
$$

and the Euler-Maruyama approximation is

$$
\widehat{S}_{i, n+1}=\widehat{S}_{i, n}+a_{i}\left(\widehat{S}_{n}, t_{n}\right) h+\sum_{j} b_{i j}\left(\widehat{S}_{n}, t_{n}\right) \Delta W_{j, n}
$$

Milstein Method

An asymptotic expansion gives

$$
S_{i}(t) \approx S_{i}(0)+\sum_{j} b_{i j}(S(0), 0) W_{j}(t)
$$

and hence

$$
\begin{aligned}
\left.b_{i j}(S(t), t)\right) & \approx b_{i j}+\sum_{l} \frac{\partial b_{i j}}{\partial S_{l}}\left(S_{l}(t)-S_{l}(0)\right) \\
& \approx b_{i j}+\sum_{k, l} \frac{\partial b_{i j}}{\partial S_{l}} b_{l k} W_{k}(t)
\end{aligned}
$$

with b and its derivatives evaluated at $(S(0), 0)$.

Milstein Method

This then leads to
$S_{i}(h) \approx S_{i}(0)+a_{i} h+\sum_{j} b_{i j} W_{j}(h)+\sum_{j, k, l} \frac{\partial b_{i j}}{\partial S_{l}} b_{l k} \int_{0}^{h} W_{k}(t) \mathrm{d} W_{j}(t)$
where a, b and its derivatives all evaluated at $(S(0), 0)$.

The problem now is to evaluate the iterated Itô integral

$$
I_{j k} \equiv \int_{0}^{h} W_{k}(t) \mathrm{d} W_{j}(t)
$$

Lévy areas

Itô calculus gives us

$$
\mathrm{d}\left(W_{j} W_{k}\right)=W_{j} \mathrm{~d} W_{k}(t)+W_{k} \mathrm{~d} W_{j}(t)+\rho_{j k} \mathrm{~d} t
$$

where $\rho_{j k}$ is the correlation between $\mathrm{d} W_{j}$ and $\mathrm{d} W_{k}$. Hence,

$$
W_{j}(h) W_{k}(h)-\rho_{j k} h=I_{k j}+I_{j k}
$$

If we define the Lévy area to be

$$
A_{j k}=I_{k j}-I_{j k}=\int_{0}^{h} W_{j}(t) \mathrm{d} W_{k}(t)-W_{k}(t) \mathrm{d} W_{j}(t)
$$

then

$$
I_{j k}=\frac{1}{2}\left(W_{j}(h) W_{k}(h)-\rho_{j k} h-A_{j k}\right) \quad \text { MC Lecture 11- р. } 14
$$

Lévy areas

The problem is that there is no easy way to simulate the Lévy areas:

- conditional distribution depends on $W_{j}(h)$ and $W_{k}(t)$ so can't simply invert a cumulative distribution function
- Lyons \& Gaines have an efficient technique in 2-dimensions but for higher dimensions, need to simulate Brownian motion within each timestep to approximate the Lévy area

However

- not all applications require it
- can be simulated very efficiently using many-core GPUs

Milstein method

The Milstein method is

$$
\begin{aligned}
\widehat{S}_{i, n+1}= & \widehat{S}_{i, n}+a_{i, n} h+\sum_{j} b_{i j, n} \Delta W_{j, n} \\
& +\frac{1}{2} \sum_{j, k, l} \frac{\partial b_{i j}}{\partial S_{l}} b_{l k, n}\left(\Delta W_{j, n} \Delta W_{k, n}-\rho_{j k} h-A_{j k, n}\right)
\end{aligned}
$$

with

$$
A_{j k, n}=\int_{t_{n}}^{t_{n+1}}\left(W_{j}(t)-W_{j}\left(t_{n}\right)\right) \mathrm{d} W_{k}(t)-\left(W_{k}(t)-W_{k}\left(t_{n}\right)\right) \mathrm{d} W_{j}(t)
$$

Milstein method

However, using $A_{j k}=-A_{k j}$,

$$
\begin{aligned}
\sum_{j, k, l} \frac{\partial b_{i j}}{\partial S_{l}} b_{l k} A_{j k, n} & =-\sum_{j, k, l} \frac{\partial b_{i j}}{\partial S_{l}} b_{l k} A_{k j, n} \\
& =-\sum_{j, k, l} \frac{\partial b_{i k}}{\partial S_{l}} b_{l j} A_{j k, n} \\
& =\frac{1}{2} \sum_{j, k, l}\left(\frac{\partial b_{i j}}{\partial S_{l}} b_{l k}-\frac{\partial b_{i k}}{\partial S_{l}} b_{l j}\right) A_{j k, n}
\end{aligned}
$$

and so the Lévy areas are not need if, for all i, j, k,

$$
\sum_{l} \frac{\partial b_{i j}}{\partial S_{l}} b_{l k}-\frac{\partial b_{i k}}{\partial S_{l}} b_{l j}=0
$$

Milstein method

If b is a non-singular diagonal matrix, so each component of $S(t)$ is driven by a separate component of $W(t)$, the commutativity condition reduces to

$$
\frac{\partial b_{i j}}{\partial S_{k}} b_{k k}-\frac{\partial b_{i k}}{\partial S_{j}} b_{j j}=0
$$

- if either $i=j=k$, or $i \neq j$ and $i \neq k$, this is satisfied
- if $i=j$ and $i \neq k$, it requires $\frac{\partial b_{i i}}{\partial S_{k}}=0$
- if $i=k$ and $i \neq j$, it requires $\frac{\partial b_{i i}}{\partial S_{j}}=0$
- hence, OK provided $b_{i i}$ depends only on S_{i}

Final words

- Milstein scheme gives improved $O(h)$ strong convergence
- in vector case, needs simulation of Lévy areas in many cases, but not in some important applications
- weak convergence is not improved, so no benefit in most applications
- however, improved strong convergence does help with Multilevel Monte Carlo method
- other higher order methods have similar terms
- the Euler-Maruyama method has the highest order of accuracy achievable using just Brownian increments

