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Euler-Maruyama method

For the vector SDE

dS = a(S, t) dt+ b(S, t) dW

the Euler-Maruyama approximation is again

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

but now a(S, t) is a vector, b(S, t) is a matrix and ∆Wn is a
vector of Brownian increments with a prescribed correlation.

Remember: can define ∆Wn = LZn where elements of Zn

are i.i.d. unit Normals and

LLT = Cov(∆Wn)
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Euler-Maruyama method

Provided a and b are Lipschitz continuous in S:

O(h) weak convergence

O(
√
h) strong convergence

Theoretical result (Clark & Cameron, 1980) proves this is
the best strong convergence that can be achieved in the
general vector case based solely on Brownian increments
∆Wn.

However, can do better in the scalar case, and also in the
vector case in special cases or if we have additional
information about the driving Brownian motion
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Milstein Method

Start with scalar case:

dS = a(S, t) dt+ b(S, t) dW

which corresponds to the integral equation:

S(t) = S(0) +

∫ t

0

a(S(t), t) dt+

∫ t

0

b(S(t), t) dW (t)

where second integral is an Itô integral.

Approximating this on interval [0, h] using

a(S(t), t) ≈ a(S(0), 0), b(S(t), t) ≈ b(S(0), 0)

gives Euler-Maruyama method.
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Milstein Method

An asymptotic expansion gives

S(t) = S(0) + b(S(0), 0)W (t) + O(h)

and hence

b(S(t), t)) = b(S(0), 0) + b′(S(0), 0) (S(t)− S(0)) +O(h)

= b(S(0), 0) + b′(S(0), 0) b(S(0), 0) W (t) +O(h)

This then leads to

S(h) = S(0) + a0 h+ b0W (h) + b′0 b0

∫ h

0

W (t) dW (t) +O(h3/2)

where a0, b0, b
′

0
are all evaluated at (S(0), 0).
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Milstein Method

With a standard Lebesgue integral we would say

∫ h

0

W (t) dW (t) =

∫ h

0

d(1
2
W 2(t)) = 1

2
W 2(h)

but that would be wrong here!

Instead we must use Itô calculus to give

d(1
2
W 2) = W (t) dW (t) + 1

2
dt

and hence

∫ h

0

W (t) dW (t) = 1

2

(
W 2(h)− h

)
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Milstein Method

This then gives us

S(h) = S(0) + a0 h+ b0W (h) + 1

2
b′0 b0

(
W 2(h)− h

)
+O(h3/2)

and so the Milstein scheme is

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

+ 1

2
b′(Ŝn, tn) b(Ŝn, tn)

(
∆W 2

n − h
)

Note that E[∆W 2
n − h] = 0, V[∆W 2

n − h] = 2h2

so the r.m.s. effect of extra “Milstein term” after T/h

timesteps is O(
√
h), correcting the O(

√
h) error of the

Euler-Maruyama method.
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Strong convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1
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Strong convergence
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Strong convergence
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Milstein Method

In the vector case, the SDE

dSi = ai(S, t) dt+
∑

j

bij(S, t) dWj

corresponds to the integral equation:

Si(t) = Si(0) +

∫ t

0

ai(S(t), t) dt+
∑

j

∫ t

0

bij(S(t), t) dWj(t)

and the Euler-Maruyama approximation is

Ŝi,n+1 = Ŝi,n + ai(Ŝn, tn)h+
∑

j

bij(Ŝn, tn)∆Wj,n
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Milstein Method

An asymptotic expansion gives

Si(t) ≈ Si(0) +
∑

j

bij(S(0), 0)Wj(t)

and hence

bij(S(t), t)) ≈ bij +
∑

l

∂bij
∂Sl

(Sl(t)− Sl(0))

≈ bij +
∑

k,l

∂bij
∂Sl

blk Wk(t)

with b and its derivatives evaluated at (S(0), 0).
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Milstein Method

This then leads to

Si(h) ≈ Si(0)+ai h+
∑

j

bij Wj(h)+
∑

j,k,l

∂bij
∂Sl

blk

∫ h

0

Wk(t) dWj(t)

where a, b and its derivatives all evaluated at (S(0), 0).

The problem now is to evaluate the iterated Itô integral

Ijk ≡
∫ h

0

Wk(t) dWj(t)
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Lévy areas

Itô calculus gives us

d(Wj Wk) = Wj dWk(t) +Wk dWj(t) + ρjk dt

where ρjk is the correlation between dWj and dWk.

Hence,

Wj(h)Wk(h)− ρjk h = Ikj + Ijk

If we define the Lévy area to be

Ajk = Ikj − Ijk =

∫ h

0

Wj(t) dWk(t)−Wk(t) dWj(t)

then

Ijk = 1

2

(
Wj(h)Wk(h)− ρjk h− Ajk

)
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Lévy areas

The problem is that there is no easy way to simulate the
Lévy areas:

conditional distribution depends on Wj(h) and Wk(t) so

can’t simply invert a cumulative distribution function

Lyons & Gaines have an efficient technique in
2-dimensions but for higher dimensions, need to
simulate Brownian motion within each timestep to
approximate the Lévy area

However

not all applications require it

can be simulated very efficiently using many-core GPUs
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Milstein method

The Milstein method is

Ŝi,n+1 = Ŝi,n + ai,n h+
∑

j

bij,n∆Wj,n

+ 1

2

∑

j,k,l

∂bij
∂Sl

blk,n
(
∆Wj,n∆Wk,n − ρjk h−Ajk,n

)

with

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk(t) − (Wk(t)−Wk(tn)) dWj(t)
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Milstein method

However, using Ajk = −Akj,

∑

j,k,l

∂bij
∂Sl

blk Ajk,n = −
∑

j,k,l

∂bij
∂Sl

blk Akj,n

= −
∑

j,k,l

∂bik
∂Sl

blj Ajk,n

= 1

2

∑

j,k,l

(
∂bij
∂Sl

blk −
∂bik
∂Sl

blj

)
Ajk,n

and so the Lévy areas are not need if, for all i, j, k,

∑

l

∂bij
∂Sl

blk −
∂bik
∂Sl

blj = 0.
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Milstein method

If b is a non-singular diagonal matrix, so each component
of S(t) is driven by a separate component of W (t), the
commutativity condition reduces to

∂bij
∂Sk

bkk −
∂bik
∂Sj

bjj = 0

if either i=j=k, or i 6=j and i 6=k, this is satisfied

if i=j and i 6=k, it requires
∂bii
∂Sk

= 0

if i=k and i 6=j, it requires
∂bii
∂Sj

= 0

hence, OK provided bii depends only on Si
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Final words

Milstein scheme gives improved O(h) strong
convergence

in vector case, needs simulation of Lévy areas in
many cases, but not in some important applications

weak convergence is not improved, so no benefit
in most applications

however, improved strong convergence does help
with Multilevel Monte Carlo method

other higher order methods have similar terms
– the Euler-Maruyama method has the highest order of
accuracy achievable using just Brownian increments
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