
Numerical Methods II

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

MC Lecture 1 – p. 1



Monte Carlo methods

In computational finance for option pricing there are two
main approaches:

Monte Carlo methods for estimating expected values of
financial payoff functions based on underlying assets.

This term, we consider payoffs which depend on the
terminal value of one or more underlying assets.

In the simplest case, we have

ST = S0 exp
(

(r− 1

2
σ2)T + σWT

)

where WT is the value of the driving Brownian motion at
the terminal time, which has a Normal distribution with
mean 0 and variance T .

MC Lecture 1 – p. 2



Monte Carlo methods

Numerical approximation of the PDE which describes
the evolution of the expected value.

u(s, t) = E
[

f(ST ) | St = s
]

This is usually less costly than MC when there are very
few underlying assets (≤ 3), but much more expensive
when there are many.

MC Lecture 1 – p. 3



Random Number Generation

Monte Carlo simulation starts with random number
generation, which often is split into 3 stages:

generation of independent uniform (0, 1) random
variables

conversion into independent Normal N(0, 1) random
variables

conversion into correlated Normal N(0, 1) random
variables

This lecture will cover:

what you need to know as a user

background information to make you better informed

MC Lecture 1 – p. 4



Uniform Random Variables

Generating “good” uniform random variables is
technically complex

Never write your own generator; always use a well
validated generator from a reputable source

Matlab

NAG

Intel MKL

AMD ACML

not MS Excel, C rand function or Numerical Recipes

What you need to know is what to look for in a good
generator

Useful background knowledge is how they work

MC Lecture 1 – p. 5



Uniform Random Variables

Pseudo-random number generators use a deterministic
(i.e. repeatable) algorithm to generate a sequence of
(apparently) random numbers on (0, 1) interval.

What defines a good generator?

a long period – how long it takes before the sequence
repeats itself

232 is not enough – need at least 240

various statistical tests to measure “randomness”

well validated software will have gone through these
checks

MC Lecture 1 – p. 6



Uniform Random Variables

Practical considerations:

computational cost – RNG cost can be as large as rest
of Monte Carlo simulation

trivially-parallel Monte Carlo simulation on a compute
cluster requires the ability to “skip-ahead” to an arbitrary
starting point in the sequence

first computer gets first 106 numbers

second computer gets second 106 numbers, etc

MC Lecture 1 – p. 7



Uniform Random Variables

“Multiplicative congruential algorithms” based on

ni = (a× ni−1) mod m

choice of integers a and m is crucial

(0,1) random number given by ni/m

typical period is 257, a bit smaller than m

can skip-ahead 2k places at low cost by repeatedly
squaring a, mod m

MC Lecture 1 – p. 8



Uniform Random Variables

Mersenne twister is very popular in finance:

developed in 1997 so still quite new

huge period of 219937−1; I think this is the main reason
it’s popular for Monte Carlo applications

I’ve heard conflicting comments on its statistical
properties

MC Lecture 1 – p. 9



Uniform Random Variables

For more details see

Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

NAG library information
www.nag.co.uk/numeric/CL/nagdoc cl08/pdf/G05/g05 conts.pdf

Matlab information
www.mathworks.com/moler/random.pdf

Wikipedia information
en.wikipedia.org/wiki/Random number generation

en.wikipedia.org/wiki/List of random number generators

en.wikipedia.org/wiki/Mersenne Twister

MC Lecture 1 – p. 10



Normal Random Variables

In computational finance we work extensively with Normal

random variables, N(µ, σ2), with mean µ and variance σ2.

An N(0, 1) Normal random variable Z with mean 0 and
variance 1 has a probability density function (pdf)

φ(z) =
1√
2π

exp(−1

2
z2),

and cumulative distribution function (CDF)

Φ(z) = P[Z < z] =

∫ z

−∞

φ(s) ds.

MC Lecture 1 – p. 11



Normal Random Variables

To generate N(0, 1) Normal random variables, we start with
a sequence of uniform random variables on (0, 1).

There are then 4 main ways of converting them into N(0, 1)
Normal variables:

Box-Muller method

Marsaglia’s polar method

Marsaglia’s ziggurat method

inverse CDF transformation

MC Lecture 1 – p. 12



Normal Random Variables

The Box-Muller method takes y1, y2, two independent
uniformly distributed random variables on (0, 1) and defines

x1 =
√

−2 log(y1) cos(2πy2)

x2 =
√

−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random
variables, and independent.

A log, cos and sin operation per 2 Normals makes this a
slightly expensive method.

MC Lecture 1 – p. 13



Normal Random Variables

Marsaglia’s polar method is as follows:

Take y1, y2 from uniform distribution on (−1, 1)

Accept if r2 = y2
1
+ y2

2
< 1, otherwise get new y1, y2

Define x1 =
√

−2 log(r2)/r2 y1

x2 =
√

−2 log(r2)/r2 y2

Again it can be proved that x1 and x2 are independent
N(0, 1) random variables.

Despite approximately 20% rejections, it is slightly more
efficient because of not needing cos, sin operations.
However, rejection of some of the uniforms spoils the
skip-ahead capability.

MC Lecture 1 – p. 14



Normal Random Variables

Marsaglia’s ziggurat method is the fastest, but also the
hardest to explain. The details aren’t really important, so I’ll
just give an outline.

The unit area under the standard Normal distribution in
broken up into a number of rectangles (accounting for over
98% of the area) and other bits.

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

x

φ(
x)

MC Lecture 1 – p. 15



Normal Random Variables

Given a uniformly distributed (0, 1) random input:

a lookup table is used to determine if it corresponds to
one of the rectangles

if so, then the corresponding output is uniformly
distributed within the rectangle and so can be computed
very easily

if not, the calculation is much more complex, but this
only happens 2% of the time

Matlab uses this approach in randn

www.mathworks.com/moler/random.pdf

MC Lecture 1 – p. 16



Normal Random Variables

The inverse CDF transformation method takes y, uniformly
distributed on (0, 1), and defines

x = Φ−1(y),

where Φ(x) is the Normal CDF defined earlier.

Φ−1(y) is approximated in software in a very similar way to
the implementation of cos, sin, log, so this is just as accurate
as the other methods.

It is also a more flexible approach because we’ll need

Φ−1(y) later for stratified sampling and quasi-Monte Carlo
methods.

MC Lecture 1 – p. 17



Normal Random Variables

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

Φ
(x

)

0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

x

Φ
-1

(x
)

MC Lecture 1 – p. 18



Normal Random Variables

Some useful weblinks:

home.online.no/˜pjacklam/notes/invnorm/

code for Φ−1 function in many different languages

lib.stat.cmu.edu/apstat/241/

single and double precision code in FORTRAN
(coming soon in next version of NAG libraries)

en.wikipedia.org/wiki/Normal distribution

Wikipedia definition of Φ matches mine

mathworld.wolfram.com/NormalDistribution.html

mathworld.wolfram.com/DistributionFunction.html

Good Mathworld items, but their definition of Φ is
slightly different; they call the cumulative distribution
function D(x).

MC Lecture 1 – p. 19



Normal Random Variables

The Normal CDF Φ(x) is related to the error function erf(x):

Φ(x) = 1

2
+ 1

2
erf(x/

√
2) =⇒ Φ−1(y) =

√
2 erf−1(2y−1)

so this is the function I often use in Matlab code:

function x = ncfinv(y)

x = sqrt(2)*erfinv(2*y-1);

However, the MATLAB Statistics toolbox also has a function

norminv(p), norminv(p,mu,sigma).

MC Lecture 1 – p. 20



Correlated Normal Random Variables

The final step is to generate a vector of Normally distributed
variables with a prescribed covariance matrix.

Suppose x is a vector of independent N(0, 1) variables, and
define a new vector y = Lx.

Each element of y is Normally distributed, E[y] = LE[x] = 0,
and

E[y yT ] = E[LxxT LT ] = LE[xxT ]LT = LLT .

since E[xxT ] = I because

elements of x are independent =⇒ E[xi xj ] = 0 for i 6= j

elements of x have unit variance =⇒ E[x2i ] = 1

MC Lecture 1 – p. 21



Correlated Normal Random Variables

To get E[y yT ] = Σ, we need to find L such that

LLT = Σ

L is not uniquely defined. Simplest choice is to use a
Cholesky factorization in which L is lower-triangular, with a
positive diagonal.

MC Lecture 1 – p. 22



Correlated Normal Random Variables

Pseudo-code for Cholesky factorization LLT = Σ:

for i from 1 to N
for j from 1 to i
for k from 1 to j−1

Σij := Σij − LikLjk

end

if j=i
Lii :=

√
Σii

else

Lij := Σij/Ljj

endif

end

end

MC Lecture 1 – p. 23



Correlated Normal Random Variables

Alternatively, if Σ has eigenvalues λi ≥ 0, and orthonormal
eigenvectors ui, so that

Σui = λi ui, =⇒ ΣU = U Λ

then

Σ = U ΛUT = LLT

where

L = U Λ1/2.

This is the PCA decomposition; it is no better than the
Cholesky decomposition for standard Monte Carlo
simulation, but is often better for stratified sampling and
quasi-Monte Carlo methods.

MC Lecture 1 – p. 24



Final advice

always use mathematical libraries as much as
possible

usually they will give you uncorrelated Normals, and
you have to convert these into correlated Normals

later with stratified sampling and quasi-Monte Carlo
methods, we will use the inverse cumulative Normal
distribution to convert (quasi-)uniforms into
(quasi-)Normals

MC Lecture 1 – p. 25


	Monte Carlo methods
	Monte Carlo methods
	Random Number Generation
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Uniform Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Normal Random Variables
	Correlated Normal Random Variables
	Correlated Normal Random Variables
	Correlated Normal Random Variables
	Correlated Normal Random Variables
	Final advice

