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grid generation
sensitivity analysis
adjoint approach
applications
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Grid Generation

For design purposes we need to be able to
create
e a base grid for given values of design
parameters
e perturbed grids for perturbed values

The linear/nonlinear perturbed grids have the
same topology as the base grid, so any
objective function varies smoothly.

Aerodynamic optimisation for complex geometries




Grid Generation

Base grid generation:

e parametric solids-based EPD system
defines solid surface as a collection of
surface patches separated by lines
terminated by points

e surface is gridded in order of
increasing dimensionality (point, line,
surface patch)

e interior grid nodes are then created by
advancing front or Delauney
algorithms
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Grid Generation

Perturbed grid generation:

e parametric perturbation defines
perturbation to solid surfaces and
separating lines

e surface grid node perturbations are
defined in order of increasing
dimensionality (point, line, surface
patch)

e interior grid nodes are perturbed using
‘method of springs’ or elliptic p.d.e.
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Grid Generation

Method of springs:

e edges of grid are modelled as springs

e base grid is defined to be in
equilibrium

e perturbation to surface points disturbs
equilibrium, leading to perturbation to
interior nodes to re-establish it

e strength of springs is defined to ensure
No cross-over in the boundary layer

e (similar idea can be used to define
surface perturbations in the first place)
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Grid Generation

In the elliptic p.d.e. approach, grid node
perturbations x(x) are defined by

V.-(k(x)Vx) =0,
subject to specified boundary conditions.

k(x) is defined to ensure no cross-over in
boundary layers.
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Nonlinear Sensitivity

For a single design variable «, discrete
flow equations

FU,a) =0,

define flow field U as a function of «.

Gradient of objective function I(U,«) can
be approximated by

dl _I(U(a+te),ate) — I(U(a),a).

do €

Easily generalised to multiple design
variables, at cost of extra calculations.
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Linear Sensitivity

Linearising discrete flow equations gives

OF — OF
oU U~ da %
where
OF OF 0X
oo~ 00X Oa

l.e. change in o perturbs grid coordinates
which perturb flux residuals.

—~

U represents flow perturbation as seen by
perturbed grid point
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Linear Sensitivity

Gradient of objective function is given by

al 01 —
_|_ _
doo ~ OU
Generalisation to multiple design
parameters requires separate calculation
for each, so no particular benefit

compared to nonlinear sensitivities.
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Discrete Adjoint

Substituting for U gives
al 01 <8F> OF

do ~  OU \oU 8—a+—

which can be written as

dl OF  0OI
=y 4
do oa oo

where V satisfies the adjoint equation

(55) v+ (5) =0
N
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Discrete Adjoint

The advantage of the adjoint approach is
that the same adjoint solution V can be
used for each design variable, since V
depends on I but not «.

The drawback is that because V depends
on I a separate calculation must be
performed for each constraint function.

Question: in real engineering applications,
how many design variables and constraints
are there?
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Analytic Adjoint
The analytic adjoint is more complicated.
Critical first step is formulation of linear
perturbation equations.
Simple linearisation of 2D Euler equations
0 0
—F(U) + - Fy(U) =0,
ox oy
yields
o ~ o ~
—(AxU) + —(AyU) = 0,
ox oy
where U is perturbation at a fixed point.
/
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Analytic Adjoint

However, linearising the b.c.
u-n =20,
gives
un—+ (x-Vu) n+u-n=0,
which is hard to discretise accurately.
This is similar to discrete adjoint

treatment with no perturbation to interior
grid points.
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Analytic Adjoint

Now define perturbed coordinates as

37:5"_05)((5777)7 y:77+OéY(§,77)a

where X (&,17) and Y (&,n) are smooth
functions which match the surface

\_

Start instead with generalised coordinates,

0 Fay Fyax 4+ 9 Fy%—Fx@ —0.
¢ dn) 9In 03 03

perturbations due to the design variable «.
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Analytic Adjoint

Linearising with respect to «a vyields

S0+ 20y = - (RS-

0 0X

— | —
on oS

where U is now the perturbation in the

flow variables for fixed (&£,7n) rather than
fixed (z,v).

The linearisation of the b.c.'s is simple,
and the overall accuracy is much better.
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on ya—n
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OGV Design
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OGV Design
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OGV Design

Objective is to minimise circumferential
pressure variation upstream of the OGV's
by changing their camber.

Optimisation uses
e unstructured grid with 560k tetrahedra
e Euler equations
e Mmultigrid and parallel computing
e ¢elliptic p.d.e. for grid perturbation
e nonlinear sensitivities and
quasi-Newton optimisation
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OGV Design

Leading edge of each OGV is left
unchanged due to uniform flow incidence;
camber change varies linearly with
distance from leading edge to change the
outflow angle.

First design exercise uses a camber
change which varies sinusoidally with
circumferential angle.

Only 2 design variables: maximum change
at hub and tip
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OGV Design

Optimisation using sinusoidal variation
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OGV Design
Optimisation using sinusoidal variation
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OGV Design
Drawback of this design is that all OGV's
are different.
Second design exercise uses just 3 blade
types, the original, one with overturning
and one with an equal amount of
underturning.
Still only 2 design variables: maximum
change at hub and tip
\ /
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OGV Design
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OGV Design

Ogtimisation using 3 blade types
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OGV Design

Optimisation using 3 blade types
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Business Jet

J. Elliott and J. Peraire, MIT, 1996

Aerodynamic optimisation for complex geometries



Business Jet

Objective function is mean-square
deviation from a target pressure
distribution for a ‘clean’ wing in the
absence of the rear nacelle.

6 design variables are used to define
smooth perturbations to the wing.
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Business Jet

Optimisation uses

unstructured grid with 860k tetrahedra
Euler equations

multigrid and parallel computing
method of springs for grid
perturbation

BFGS optimisation method with
discrete adjoint formulation for
gradients
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Business Jet
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Business Jet
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Conclusions/Future

aerodynamic optimisation for complex
geometries is becoming a reality

with multigrid and parallel computing,
costs are now acceptable for inviscid
modelling; viscous modelling is under
development but will cost up to 5
times as much

grid generation for base grids and
perturbed grids is a critical component
pros and cons of different optimisation
methods has yet to be properly
investigated
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