

Grid Generation

In the elliptic p.d.e. approach, grid node perturbations $\tilde{x}(x)$ are defined by

 $\nabla \cdot (k(x)\nabla \widetilde{x}) = 0,$

subject to specified boundary conditions.

k(x) is defined to ensure no cross-over in boundary layers.

Nonlinear Sensitivity

For a single design variable α , discrete flow equations

 $F(U,\alpha)=0,$

define flow field \boldsymbol{U} as a function of α .

Gradient of objective function $I(\boldsymbol{U}, \alpha)$ can be approximated by

$$\frac{dI}{d\alpha} \approx \frac{I(U(\alpha + \epsilon), \alpha + \epsilon) - I(U(\alpha), \alpha)}{\epsilon}$$

Easily generalised to multiple design variables, at cost of extra calculations.

Linearising discrete flow equations gives

$$\frac{\partial F}{\partial U} \widetilde{U} + \frac{\partial F}{\partial \alpha} = 0,$$

where

$$\frac{\partial F}{\partial \alpha} \equiv \frac{\partial F}{\partial X} \frac{\partial X}{\partial \alpha}$$

i.e. change in α perturbs grid coordinates which perturb flux residuals.

 \widetilde{U} represents flow perturbation as seen by perturbed grid point

Linear Sensitivity

Gradient of objective function is given by

$$\frac{dI}{d\alpha} = \frac{\partial I}{\partial U} \,\widetilde{U} + \frac{\partial I}{\partial \alpha}.$$

Generalisation to multiple design parameters requires separate calculation for each, so no particular benefit compared to nonlinear sensitivities.

Discrete Adjoint

The advantage of the adjoint approach is that the same adjoint solution V can be used for each design variable, since V depends on I but not α .

The drawback is that because V depends on I a separate calculation must be performed for each constraint function.

Question: in real engineering applications, how many design variables and constraints are there?

Analytic Adjoint

The analytic adjoint is more complicated. Critical first step is formulation of linear perturbation equations.

Simple linearisation of 2D Euler equations

$$\frac{\partial}{\partial x}F_x(U) + \frac{\partial}{\partial y}F_y(U) = 0,$$

yields

$$\frac{\partial}{\partial x}(A_x\tilde{U}) + \frac{\partial}{\partial y}(A_y\tilde{U}) = 0,$$

where \widetilde{U} is perturbation at a fixed point.

Analytic Adjoint

However, linearising the b.c.

 $u \cdot n = 0,$

gives

$$\widetilde{u} \cdot n + (\widetilde{x} \cdot \nabla u) \cdot n + u \cdot \widetilde{n} = 0,$$

which is hard to discretise accurately.

This is similar to discrete adjoint treatment with no perturbation to interior grid points.

Analytic Adjoint Start instead with generalised coordinates, $\frac{\partial}{\partial \xi} \left(F_x \frac{\partial y}{\partial n} - F_y \frac{\partial x}{\partial n} \right) + \frac{\partial}{\partial n} \left(F_y \frac{\partial x}{\partial \xi} - F_x \frac{\partial y}{\partial \xi} \right) = 0.$ Now define perturbed coordinates as $x = \xi + \alpha X(\xi, \eta), \quad y = \eta + \alpha Y(\xi, \eta),$ where $X(\xi,\eta)$ and $Y(\xi,\eta)$ are smooth functions which match the surface perturbations due to the design variable α .

Analytic Adjoint Linearising with respect to α yields $\frac{\partial}{\partial \xi} (A_x \tilde{U}) + \frac{\partial}{\partial \eta} (A_y \tilde{U}) = -\frac{\partial}{\partial \xi} \left(F_x \frac{\partial Y}{\partial \eta} - F_y \frac{\partial X}{\partial \eta} \right)$ $-\frac{\partial}{\partial n}\left(F_y\frac{\partial X}{\partial \xi}-F_x\frac{\partial Y}{\partial \xi}\right),\,$ where U is now the perturbation in the flow variables for fixed (ξ, η) rather than fixed (x, y). The linearisation of the b.c.'s is simple,

and the overall accuracy is much better.

OGV Design

Objective is to minimise circumferential pressure variation upstream of the OGV's by changing their camber.

Optimisation uses

- unstructured grid with 560k tetrahedra
- Euler equations
- multigrid and parallel computing
- elliptic p.d.e. for grid perturbation
- nonlinear sensitivities and quasi-Newton optimisation

OGV Design

Leading edge of each OGV is left unchanged due to uniform flow incidence; camber change varies linearly with distance from leading edge to change the outflow angle.

First design exercise uses a camber change which varies sinusoidally with circumferential angle.

Only 2 design variables: maximum change at hub and tip

OGV Design

Drawback of this design is that all OGV's are different.

Second design exercise uses just 3 blade types, the original, one with overturning and one with an equal amount of underturning.

Still only 2 design variables: maximum change at hub and tip

Conclusions/Future

- aerodynamic optimisation for complex geometries is becoming a reality
- with multigrid and parallel computing, costs are now acceptable for inviscid modelling; viscous modelling is under development but will cost up to 5 times as much
- grid generation for base grids and perturbed grids is a critical component
- pros and cons of different optimisation methods has yet to be properly investigated