
Adjoint Error Corretionfor Integral OutputsMihael B. Giles1 and Niles A. Piere21 Oxford University Computing Laboratory,Oxford OX1 3QD, United Kingdom2 Applied & Computational Mathematis,California Institute of Tehnology, Pasadena, CA 91125Abstrat. These leture notes begin by observing that in many ases the most im-portant engineering outputs of CFD alulations are one or two integral quantities,suh as the lift and drag. It is then explained that the solution to an appropriateadjoint problem gives the e�et of numerial approximations on the output fun-tional of interest, failitating the alulation of more aurate funtional estimates.The theory is presented for both linear and nonlinear di�erential equations, inor-porating a range of numerial examples illustrating the ability to obtain answerswith twie the order of auray of the underlying numerial solution.1 Introdution1.1 Output funtionalsWhy do engineers perform CFD alulations? In the ase of a transport air-raft at ruise onditions, a alulation might be performed to investigatewhether there is an adverse pressure gradient near the leading edge of thewing, ausing boundary layer separation and premature transition. Alter-natively, one might be onerned about wing/pylon/naelle integration, inwhih ase one might be looking to see if there are any shoks on the py-lon, leading to unaeptable integration losses. In both of these examples,qualitative information is being obtained from the omputed ow �eld tounderstand and interpret the impat of the phenomena on the quantitativeoutputs of most onern to the aeronautial engineer, the lift and drag on theairraft. The quality of the CFD alulation is judged, �rst and foremost, bythe auray of the lift and drag preditions. The details of the ow �eld aremuh less important, and are used in a more qualitative manner to suggestways in whih the design may be modi�ed to improve the lift or drag. Thisfous on a few output quantities is even learer in design optimisation, whenone is trying to optimise a single objetive funtion, possibly subjet to anumber of onstraints.This interest in integral outputs, also referred to as funtionals, arises inmany appliations of CFD. Oasionally, volume integrals are of importane.For example, the infra-red signature of a military airraft will depend in parton a volume integral of some funtion of the temperature in the thermal wake



2 M.B. Giles and N.A. Pierebehind the airraft. However, usually it is surfae integrals that are of mostonern, as with lift and drag. Other aeronautial examples inlude: the rollmoment produed by aileron deetion; the mass ow through a ompressorblade row; the outow ux of nitrous oxides from a ombustor; the total heatux into a high pressure turbine blade from the surrounding ow; averagenoise levels on the ground due to an airraft landing or taking o�.The idea of output funtionals is entral to these leture notes; they areonerned spei�ally with the analysis of the numerial error in these fun-tionals, and a partiular method of orretion that very greatly redues theerror, typially doubling the order of auray for the funtional relativeto the underlying ow solution. This distinguishes this kind of error analy-sis from other approahes that fous on the maximum, root-mean-square orsome other measure of the error in the whole ow �eld. The problem withsuh measures is that they an have little relation to the errors in the integraloutputs of primary onern to the engineer.As an example, onsider the wake behind a wing. To adequately resolvethe wake requires a �ne grid loally, but it is often the ase that the omputedwake a hord or two downstream of the wing passes into a region in whihthe grid resolution is rather oarse. Grid adaptation based on error estimatesthat look at the whole solution, possibly by looking at the loal trunationerror, would ause the grid to be further re�ned in this region. However, theinuene of errors in this region on the omputed lift and drag would be verysmall, and a muh greater redution in the lift and drag errors ould probablybe ahieved by adding the grid re�nement loser to the wing, possibly nearthe leading and trailing edge where very small errors an have an enormousimpat on the lift and drag.1.2 A priori and a posteriori error analysisThe adjoint error orretion tehnique to be desribed later is applied asa post-proessing step, and so it �ts into the framework of a posteriori er-ror analysis. This is error analysis based on the omputed ow solution, asopposed to a priori error analysis that is based on some (usually limited)knowledge of the analyti solution without the bene�t of any numerial so-lution.A priori error analysis leads to an error bound of the formError < hpwhere h is the representative grid spaing, and ; p are positive onstants thatdo not depend on h.The main point of a priori error analysis is �nding the value of p, whihdetermines how rapidly the error redues as the omputational grid is re�ned,uniformly. For most �nite di�erene and �nite volume methods, the error inoutput funtionals is of the same order as the error in the ow solution, so it



Adjoint Error Corretion 3does not matter whih error is onsidered. On strutured grids with smoothow solutions, the solution error is proportional to the trunation error andits order an be relatively easily determined.The value of the other onstant  depends on the details of the ana-lyti problem being solved, the geometry of the omputational domain, theboundary onditions, et. It is extremely diÆult to get a good value for  foranything but the simplest problems. Ridiulously large values suh as 1010are not unommon in the literature. This makes the error bound useless inany pratial sense, and as a onsequene there is often no attempt made toevaluate .One area in whih a priori error analysis is very helpful is appliationswith singularities in the solution. For suh problems, areful analysis anreveal the degree of loal grid re�nement that is required to reover the orderof auray (expressed as a funtion of the total number of grid points) thatwould be obtained for non-singular solutions.With a posteriori error analysis, ideally one would like a guaranteed errorbound of the form Error < e(uh)where e(uh) is a omputable funtion of the numerial solution uh. If theerror being onsidered is the error in the lift from a CFD alulation, thiswould enable an engineer to perform a alulation and know, with ompleteertainty, that the true value for the lift lay within ertain limits.For suh a bound to be of use, it needs to be tight. The eÆieny ortightness of the bound is measured by the ratio e(uh)=Error. A value of 1 isperfet. In the range 2{10, it is useful, but if it were more than 1000 then itwould be fairly useless for pratial purposes.Although guaranteed error bounds are the ideal, in pratie they are ex-tremely diÆult to obtain for anything but the simplest of problems. Nonlin-earity auses partiular diÆulties. Therefore, most a posteriori bounds areasymptoti, so that Error < e(uh) for all h < h0The problem is that the value of h0 is not known. All that is known is that apositive h0 does exist, below whih the asymptoti error bound will be valid.However, above this value the error may exeed the error bound.As an example, if Error = 1:36h2 + 0:77h4;then 1:37h2 is an asymptoti bound that is valid for h2 < 0:01=0:77, butexeeded when h = 1.The distintion between guaranteed and asymptoti bounds is important.With asymptoti bounds, a user must exerise their judgement to deidewhether the grid is suÆiently �ne that the bound is likely to be valid. With



4 M.B. Giles and N.A. Piereomplex geometries and omplex ow �elds, this is not easy, partiularly for anovie user. On the other hand, with a guaranteed bound one ould start withan extremely oarse grid, and then use the guaranteed error bounds to drivegrid adaptation until it produes a numerial solution within a user-spei�edtolerane. This would require no user judgement other than the hoie of theerror tolerane.We onlude this disussion of error bounds with a omment on the is-sue of error bounds versus error orretion. Error bounds based on adjointsolutions require a similar level of omputational e�ort to the adjoint errororretion to be disussed in these notes. If one has a preise estimate of theerror, this ould be used to form a near-perfet asymptoti error bound, orit ould be used to orret the leading order terms in the error and therebyobtain a solution with a higher order of auray. The latter approah is theone that we follow.1.3 An introdution to adjointsThe use of adjoints lies at the heart of error analysis for output funtionals.The main theory will use adjoint di�erential equations, but here we introduethe ideas at an algebrai level.Suppose we want to alulate the value of a vetor salar produtgTu;where the vetor u is the solution of the system of linear equationsAu = f:An equivalent dual treatment is to evaluate the produtvT f;where the v is the solution of the adjoint (or dual) equationsAT v = g;The equivalene of the two alulations omes from the simple identityvT (Au) = (AT v)Tu; (1)from whih it follows that vT f = gTu:So, to obtain a linear output funtional from the solution of a linearsystem of equations, we an either solve the original equations (sometimesreferred to as the primal equations) or solve the adjoint (dual) equations.



Adjoint Error Corretion 5This simple result is the basis for all that follows later. With di�erentialequations, the vetor produt beomes an integral inner produt, the trans-posed matrix AT beomes the adjoint di�erential operator, and the adjointidentity inludes ertain boundary integral terms, but in essene the equiva-lene is the same.When the output is desired for a single f and g, there is no bene�t inusing the adjoint approah. Either method requires the solution of a linearsystem of equations of the same dimension, with the same omputationalost. The bene�t arises when the value of the output is wanted for a sin-gle g but several di�erent vetors f . The diret approah would require thesolution of the primal equations for eah value of f , greatly inreasing theomputational ost, whereas the dual approah would still require just oneadjoint alulation, to be followed by an inexpensive vetor produt vT f , foreah f .We are now going to look at how this result an be used in two di�erentontexts: design optimisation and error analysis. The motivation for begin-ning with design optimisation is that this is the primary reason why manyresearh groups within aademia and industry are developing adjoint Eulerand Navier-Stokes odes [Jam95,AV99℄. Design optimisation has a lear in-dustrial \pay-o�", whereas the bene�ts of good error analysis are yet to beappreiated. For the same reason, design optimisation is also the most widelyknown appliation for the use of adjoints.Design optimisation Consider design optimisation using a `disrete' alge-brai approah [EP97,NA99,AB99,MP99,GDM01℄, rather than the `ontinu-ous' di�erential approah [Jam88,KIH91,TKS92,BE92,Jam95,JPM98,DG00℄,(see [Gil97,GP00℄ for a disussion of their relative merits and [NTB+99℄ foran exellent review of researh on adjoint design methods). The starting pointof this formulation is that U , the ow variables at a disrete set of points withoordinates X , is the solution of a system of nonlinear equationsN(U;X) = 0;that ome from the disretisation of the Euler or Navier-Stokes equations,together with appropriate boundary onditions.Through the grid generation proess, the grid oordinates depend on �whih represents one or more geometri design variables. In wing design, forexample, perturbations to � might hange the thikness distribution and theamber of the wing. If there is only one design variable �, we an lineariseabout a ow solution for the baseline geometry to obtainAu = fwhere u is the sensitivity of the ow �eld to hanges in �,u � dUd� ;



6 M.B. Giles and N.A. Piereand A = �N�U ; f = ��N�X dXd� :The aim of design optimisation is to minimise some objetive funtionJ(U;X) whih, for example, might be a disrete approximation to the drag.Linearising this funtion givesdJd� = gTu+ �J�X dXd� ;where gT = �J�U :In the adjoint approah, this sensitivity of the objetive funtion to hangesin � is obtained from dJd� = vT f + �J�X dXd� ;where v satis�es the adjoint equationsAT v = g:If there are several design variables, eah has a di�erent f , but the same g,so the adjoint approah is muh heaper, requiring the solution of just oneadjoint set of equations.Error analysis We now return to the original problem of evaluating gTuwith u being the solution of the linear equationsAu = f:The orresponding dual problem whih is to evaluate vT f where v is thesolution of the adjoint equations AT v = g:Suppose we have approximate solutions ~u; ~v to eah of these equations.We an then obtain the following result.gTu=gT ~u+ gT (u�~u)=gT ~u+ vTA (u�~u)=gT ~u+ ~vTA (u�~u) + (v�~v)TA (u�~u)=gT ~u� ~vT (A~u�f) + (v�~v)TA (u�~u): (2)The �rst of the three terms in the �nal result is the value of the funtionalusing the approximate solution ~u. The seond term is also omputable sineit involves the known approximate solutions ~u and ~v.



Adjoint Error Corretion 7The third term is not omputable if the exat solutions u and v are notknown. However, if ~u and ~v are lose approximations to u and v, respetively,then the third term will be very small. Thus, the sum of the �rst two termsgives a very good approximation to the true value of gTu { a muh betterapproximation in general than gT ~u.Note the form of the seond term, whih we refer to as the adjoint errororretion term. A~u�f is the residual error in solving the equations Au = f .The approximate adjoint solution ~v provides the appropriate weighting for theresidual error, giving the e�et of the residual error on the output funtionalof interest. This inner produt of a residual error and an adjoint weightingwill be repeated throughout these notes.To take it a step further, suppose now that we want to evaluate a nonlinearfuntion J(U), where U is the solution of the nonlinear equationsN(U) = 0:Given an approximate solution eU , we de�ne u to be the solution error,u = eU � U;and then linearise both the nonlinear equations and the funtional to obtainN(eU) = N(U+u) � �N�U u;and J(eU) = J(U+u) � J(U) + �J�U u:These an be re-written as Au � f;where A = �N�U ; f = N(eU):and J(U) � J(eU)� gTu;where gT = �J�U :If v is de�ned to satisfy the adjoint equationAT v = g;then we obtain J(U) � J(eU)� vT f � J(eU)� vTN(eU):Hene, the quantity J(eU)� vTN(eU)is a more aurate estimate for J(U) than J(eU) alone. Again note that theadjoint error orretion term is a produt of an approximate adjoint solutionand the residual error from the original nonlinear equations.



8 M.B. Giles and N.A. PiereAutomati di�erentiation An introdution to adjoints would not be om-plete without a mention of Automati Di�erentiation (AD). This is a teh-nique, implemented in a number of software pakages, that starts with a odeto ompute a nonlinear vetor funtion F (U), and automatially generatesodes to ompute either �F�U ~ufor any ~u (forward mode), or ��F�U�T�vfor any �v (reverse mode).The forward mode is relatively easy to understand. A omputer ode anbe deomposed into a sequene of binary operations = op(a; b);where the operation is addition, subtration, multipliation or division, plusa few unitary operations  = fn(a);where the funtion may be, for example, an exponential or a logarithm. If wetreat unitary operations as a speial ase of binary operations, then linearisinga binary operation gives~ = ��a ~a+ ��b ~b = � ��a ��b�� ~a~b� :The forward mode AD software inserts the instrutions to ompute ��aand ��b and evaluate the output sensitivity ~ given the sensitivities of the twoinputs. Carrying this out throughout the ode gives the linear sensitivity ofthe output of the whole ode to a spei�ed ombination of linear perturba-tions to the inputs.The reverse mode AD software performs a task that seems muh harderthan the forward mode, but in fat it is only slightly harder. Looking again atthe single binary instrution, suppose for simpliity that the variables a; b; are used only one during the whole ode. Let �a;�b; � denote the sensitivityof the output of the whole ode to perturbations in a; b; . These are thenrelated by the equation � �a�b� = � ��a ��b�T �;whih is the transpose of the linear sensitivity equation. The triky thingwith the reverse mode is that the adjoint steps have to be performed in the



Adjoint Error Corretion 9reverse order to the original nonlinear ode. Therefore the AD software hasto generate temporary storage for eah operation in whih to keep the lin-earisation oeÆients suh as ��a and ��b . Other than this, the omputationalost of reverse mode AD is similar to forward mode AD, typially no morethan a fator 4 greater than the original nonlinear ode.The main AD pakages are ADIFOR [BCH+98℄, Odyss�ee [FP98℄ andTAMC [GK98℄. For further information, the reader is referred to the do-umentation for eah of these, and the exellent book by Griewank [Gri00℄,one of the original developers of ADIFOR.The signi�ane of these pakages is that they an greatly simplify the taskof writing an adjoint CFD ode. For examples of the use of AD to generatesuh odes see [MP99,Moh97,CFG98℄. However, there are limitations to theirability to arry out automati di�erentiation of odes that use iterative solvers[Gil01℄, so it is best to view them as aides rather than a blak-box solution.1.4 A brief overview of the literatureHere we give a very brief overview of some of the main developments in theliterature onerning the use of adjoints for error analysis.The subjet begins in 1967 with the work of Aubin and Nitshe (see[SF73℄), who used a suitably de�ned adjoint problem to derive a priori opti-mal order proofs of L2 onvergene of �nite element approximations of ellip-ti p.d.e.'s. In 1978, Babu�ska and Rheinboldt [BR78b,BR78a℄ built on thisto develop an a posteriori error analysis that they applied to �nite elementapproximations of the Poisson and Cauhy-Riemann equations.In 1984, Babu�ska and Miller [BM84a,BM84b℄ were perhaps the �rst tofous attention on integral funtional outputs. Beause their primary interestwas in point funtionals suh as the maximum stress in strutural analysisappliations, they used \extration funtions" to onvert the point quantitiesinto integrals. A key feature of these papers is the a priori analysis of thesuperonvergene of the �nite element approximations of the integral fun-tionals. This will be disussed later in these leture notes, but the essene isthat the adjoint error orretion term outlined previously is zero beause ofa partiular feature of Galerkin �nite element methods known as \Galerkinorthogonality". As a result, the order of auray of the values for integralfuntionals is roughly double that of the underlying �nite element solution.In extending this work to the onvetion-di�usion equation, Barrett andElliott [BE87℄ were the �rst to analyse a problem that is not self-adjoint,(i.e. one for whih the adjoint di�erential operator is not the same as theoriginal di�erential operator). This step was vital for CFD appliations, noneof whih are self-adjoint.The late 1990's saw an explosion of interest and researh into a posteriorianalysis of errors in integral funtionals and related methods for optimal gridadaptation. S�uli [GLLS97,MS98,S�ul98,HRS00℄, Johnson [Joh95,JRB95℄ andRannaher and Beker [BR96,BR98,BR99,Ran00,BKR00,BR01℄ have used



10 M.B. Giles and N.A. Piere�nite element methods that exhibit natural superonvergene and have fo-ussed their attention on using a posteriori error bounds to derive good gridadaptation indiators. In outline, their approahes are similar, but with sig-ni�ant di�erenes in the details.Patera and Peraire [PP97,PPP97,PP99℄ also fous on �nite element meth-ods, but they use a ompletely di�erent a posteriori approah to derive errorbounds for the funtional omputed on a \truth mesh" that is de�ned to besuÆiently �ne that the disretisation errors may be negleted. Yet anotherapproah for bounding the errors in funtional outputs from �nite elementmethods is that of Oden and Prudhomme [OP99,OP00℄.These leture notes over the adjoint error orretion ideas developed byGiles and Piere [GP98,GP99,PG00,Gil00℄. One way in whih they may beviewed is that they extend to �nite volume methods the superonvergenethat is natural for many �nite element methods. This is ahieved through theexpliit evaluation of the adjoint orretion term whih is non-zero beauseof the lak of \orthogonality". However, as will be shown later, it is also pos-sible to apply the tehnique with �nite element solutions to obtain funtionalvalues that are even more aurate than the superonvergent values that arisenaturally from the �nite element omputation.Venditti & Darmofal [VD00,VD01℄ have used an algebrai version of theadjoint error orretion to orret the funtional errors omputed on a \truthmesh" using a solution interpolated from the original mesh. They have alsoused the approah to derive grid adaptation riteria. This will be disussedlater in these notes, and sample results will be shown.



Adjoint Error Corretion 112 Linear adjoint error orretionIn this setion we develop the adjoint orretion theory for linear di�erentialequations. We begin with a restrited version without boundary terms be-ause it has the greatest similarity to the algebrai error orretion presentedin the previous setion.2.1 Theory without boundary termsLet u be the solution of the linear di�erential equationLu = f;on some domain 
, subjet to homogeneous boundary onditions for whihthe problem is well-posed when f 2 L2(
) (meaning that f is a square-integrable funtion).The adjoint di�erential operator L� and assoiated homogeneous bound-ary onditions are de�ned by the identity(v; Lu) = (L�v; u); (3)that must hold for all u, v satisfying the respetive boundary onditions. Herethe notation (:; :) denotes an integral inner produt over the domain 
, i.e.(v; Lu) � Z
 vTLu dV;allowing for the possibility that u, and hene v, may be a vetor funtionrather than just a salar.The appropriate de�nition for L� an be onstruted by integration byparts, starting from (v; Lu), until all of the derivatives are ating on v ratherthan u. In the proess, the adjoint boundary onditions ome from the re-quirement that the boundary terms that arise from the integration by partsmust be zero. Examples of this will be given later.Suppose now that we are onerned with the value of the funtional J=(g; u), for a given funtion g 2 L2(
). An equivalent dual formulation of theproblem is to evaluate the funtional J=(v; f), where v satis�es the adjointequation L�v = g;subjet to the homogeneous adjoint boundary onditions. The equivalene ofthe two forms of the problem follows immediately from the de�nition of theadjoint operator. (v; f) = (v; Lu) = (L�v; u) = (g; u):Suppose that uh and vh are approximations to u and v, respetively, andsatisfy the homogeneous boundary onditions. The subsript h indiates that



12 M.B. Giles and N.A. Pierethe approximate solutions are derived from a numerial omputation usinga grid with average spaing h. When using �nite di�erene or �nite volumemethods, uh and vh might be reated by interpolation through omputedvalues at grid nodes. With �nite element solutions, one might simply usethe �nite element solutions themselves, or one ould again use interpola-tion through nodal values and thereby obtain approximate solutions that aresmoother than the �nite element solutions.It is assumed that uh and vh are suÆiently smooth that Luh and L�vhlie in L2(
). If uh and vh were equal to u and v, then the residual errorsLuh�f and L�vh�g would be zero. Thus, the magnitude of the residual errorsis a omputable indiation of the extent to whih uh and vh are not the truesolutions.Now, using the de�nitions and identities given above, we obtain the fol-lowing expression for the funtional:(g; u) = (g; uh)� (L�vh; uh�u) + (L�vh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (L�(vh�v); uh�u)= (g; uh)� (vh; Luh�f) + (vh�v; L(uh�u)): (4)The �rst term in the �nal expression is the value of the funtional obtainedfrom the approximate solution uh. The seond term is an inner produt of theresidual error Luh�f and the approximate adjoint solution vh. The adjointsolution gives the weighting of the ontribution of the loal residual error tothe overall error in the omputed funtional. Therefore, by evaluating andsubtrating this adjoint error term we obtain a more aurate value for thefuntional.The third term is the remaining error after making the adjoint orretion.If Luh�f = L(uh�u) is of the same order of magnitude as uh�u then the re-maining error has a bound that is proportional to the produt kuh�uk kvh�vk(using L2 norms), and thus the orreted funtional value is superonvergent.For example, if the solution errors uh�u and vh�v are both O(hp) then theerror in the funtional is O(h2p).Furthermore, the remaining error term an be expressed as(vh�v; L(uh�u)) = �vh�v; LL�1(Luh�f)�= �L�(vh�v); L�1(Luh�f)�= �L�vh�g; L�1(Luh�f)� :This has the omputable a posteriori bound kL�1k kLuh� fk kL�vh� gk.The problem with this bound is obtaining a value for the operator normkL�1k. This an be alulated analytially in the simplest ases, but forharder problems it may be neessary to estimate it numerially.Note the similarity between this analysis and the algebrai version in the�rst setion. The adjoint identities (1) and (3) look almost idential, as dothe expressions for the funtional, (2) and (4).



Adjoint Error Corretion 132.2 Galerkin �nite element methodsIf the approximate solutions uh and vh are the �nite element solutions froma Galerkin �nite element disretisation, then the orretion term(vh; Luh � f)is automatially zero, due to the requirement that the �nite element residualis orthogonal to all members of the �nite element spae [SF73℄. Thus, theGalerkin �nite element method gives naturally superonvergent estimates forintegral outputs, in the sense that a single order of auray improvement inthe solution, through inreasing the degree of the polynomials in the �niteelement spae, leads to two orders of auray improvement in the value ofthe funtional.However, there is usually a loss of auray beause of a lak of smoothnessin the �nite element solution. Typially, if the solution errors are O(hp), thenthe residual error Luh�f is O(hp�m) where m is the degree of the di�erentialoperator, the degree of the highest derivative in the operator. Hene, theremaining error in the funtional is O(h2p�m).If one takes the �nite element solution and reonstruts smoother solu-tions uh and vh, then there is the possibility of reovering O(h2p) auray forthe funtional, at the ost of arrying out an adjoint alulation to evaluatethe adjoint error orretion. This will be demonstrated in the seond of thetwo examples to follow.2.3 First example: 1D Poisson equationThe �rst example is the one-dimensional Poisson equation,d2udx2 = f;on the unit interval [0; 1℄ subjet to the homogeneous boundary onditionsu(0)=u(1)=0.The dual problem is the Poisson equation,d2vdx2 = g;subjet to the same homogeneous boundary onditions. The adjoint identityis easily veri�ed, taking into aount that u and v are zero at eah end.Z 10 v d2udx2 dx = � Z 10 dvdx dudx dx = Z 10 d2vd2x u dx:The Poisson equation is approximated numerially on a uniform grid, withspaing h, using a seond order �nite di�erene disretisation,h�2Æ2xuj = f(xj):



14 M.B. Giles and N.A. PiereThe approximate solution uh(x) is then de�ned by ubi spline interpo-lation through the nodal values uj . The adjoint solution vh is obtained inexatly the same manner.Numerial results have been obtained for the asef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error Luh�f when h= 132 , as well as the threeGaussian quadrature points on eah sub-interval that are used in the nu-merial integration of the inner produt (vh; Luh�f). Sine uh is a ubispline, fh� d2uhdx2 is ontinuous and pieewise linear. The best pieewise lin-ear approximation to f has an approximation error whose dominant term isquadrati on eah sub-interval; this explains the salloped shape of the resid-ual error. Figure 2 shows the approximate adjoint solution vh, whih simplyillustrates that the residual error in the enter of the domain ontributes mostto the overall error in the funtional.Figure 3 is a log-log plot of three quantities versus the number of ells:the error in the base value of the funtional (g; uh); the remaining error aftersubtrating the adjoint orretion term (vh; Luh�f); the a posteriori errorbound kL�1k kLuh�fk kL�vh�gk. The superimposed lines have slopes of�2 and �4, on�rming that the base solution is seond order aurate whilethe error in the orreted funtional and the error bound are both fourthorder. It is also worth noting that on a grid with 16 ells, whih might be areasonable hoie for pratial omputations, the error in the orreted valueof the funtional is over 200 times smaller than the unorreted error.2.4 Seond example: 2D Poisson equationThe seond example is the two-dimensional Poisson equation,r2u = f;on the unit square [0; 1℄� [0; 1℄ subjet to homogeneous Dirihlet boundaryonditions. The dual problem is r2v = g;with the same boundary onditions, and the adjoint identity is again easilyveri�ed, Z
 v r2u dA = � Z
 rv �ru dA = Z
 r2v u dA:For this example, the equations are approximated using a Galerkin �niteelement method with pieewise bilinear elements on a uniform Cartesian grid.Finite element error analysis reveals that the solution error for the primalproblem, and the error in the omputed funtional using the �nite element
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Adjoint Error Corretion 17solution are both O(h2). However, using bi-ubi spline interpolation throughthe omputed nodal values, one an reonstrut an improved approximatesolution uh(x; y) with an error that is still O(h2), but muh smoother, so thatthe residual error is also O(h2). Using a similarly reonstruted approximateadjoint solution vh(x; y), one an then ompute the adjoint error orretionterm resulting in a orreted funtional whose auray is O(h4). All innerprodut integrals are approximated by 3�3 Gaussian quadrature on eahsquare ell to ensure that the numerial quadrature errors are of a higherorder.Figure 4 shows the numerial results obtained for the funtionsf(x; y) = x(1�x)y(1�y); g(x; y) = sin(�x) sin(�y):The ordinate is the log of the number of ells in eah dimension, and lines ofslope �2 and �4 are again superimposed. As predited by the analysis, thebase error in the funtional is learly seond order whereas the error in theorreted value of the funtional as well as the error bound are again fourthorder.2.5 Theory with boundary termsWe now extend the theory to inlude inhomogeneous boundary onditionsfor the primal and dual problems, and boundary integrals in their outputfuntionals.Let u be the solution of the linear di�erential equationLu = f;in the domain 
, subjet to the linear boundary onditionsBu = e;on the boundary �
. In general, the dimension of the operator B may bedi�erent on di�erent parts of the boundary (e.g. inow and outow setionsfor the onvetion p.d.e.).The output funtional of interest is taken to beJ = (g; u) + (h;Cu)�
 ;where (:; :)�
 represents an integral inner produt over the boundary �
.The boundary operator C may be algebrai (e.g. Cu � u) or di�erential(e.g. Cu � �u�n ), but must have the same dimension as the adjoint boundaryondition operator B� to be de�ned shortly. Note that the omponents ofh may be set to zero if the funtional does not have a boundary integralontribution.The orresponding linear adjoint problem isL�v = g;



18 M.B. Giles and N.A. Pierein 
, subjet to the boundary onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and theboundary operator C� is(v; Lu) + (C�v;Bu)�
 = (L�v; u) + (B�v; Cu)�
 ; (5)for all u; v. This identity is obtained by integration by parts. Examples willbe given later, but see also [GP97℄ for the onstrution of the appropriateadjoint operators for the linearised Euler and Navier-Stokes equations.Using the adjoint identity, one immediately obtains the equivalent dualform of the output funtional,J = (v; f) + (C�v; e)�
 :Given approximate solutions uh; vh, we obtain the following result for thefuntional.(g; u) + (h;Cu)�
 = (g; uh) + (h;Cuh)�
�(L�vh; uh�u)� (B�vh; C(uh�u))�
+(L�vh�g; uh�u) + (B�vh�h;C(uh�u))�
= (g; uh) + (h;Cuh)�
�(vh; L(uh�u))� (C�vh; B(uh�u))�
+(L�(vh�v); uh�u) + (B�(vh�v); C(uh�u))�
= (g; uh) + (h;Cuh)�
�(vh; Luh�f)� (C�vh; Buh�e)�
+(vh�v; L(uh�u)) + (C�(vh�v); B(uh�u))�
 :In the �nal result, the �rst line is the funtional based on the approximatesolution uh. The seond line is the omputable adjoint error orretion thatnow inludes a term related to the residual error in satisfying the primalboundary onditions. The third line is the remaining error. In priniple, an aposteriori error bound for this an again be found, but the main point is thateah of the terms involves an inner produt of two small quantities, so weagain have the result that the orreted funtional is superonvergent relativeto the underlying solutions to the primal and adjoint problems.2.6 Example: 2D Laplae equationFor the 2D Laplae equation r2u = 0;



Adjoint Error Corretion 19with Dirihlet boundary onditions u = e, and funtionalJ = Z�
 h�u�n ds;we have the operatorsLu = r2u; Bu = u; Cu = �u�n:Integrating by parts givesZ
 v Lu dA = � Z
 rv � ru dA+ Z�
 v �u�n ds= Z
 r2v u dA+ Z�
 �v �u�n � �u�n v� ds;so the adjoint identity is satis�ed for all u; v if we de�neL�v = r2v; B�v = v; C�v = �v�n:To onstrut an analyti testase with urved boundaries and a singular-ity in the solution, we use a onformal mapping. We start by de�ning thedomain in a omplex Z-plane to be the region between two irles enteredat (X;Y ) = (�0:1; 0) with radii of R1 = 1:1 and R2 = 3:0. Appliation ofthe Joukowski mapping z = Z + 1Z ;then produes a omputational domain between a usped airfoil (�
z1) anda smooth outer boundary (�
z2). Using ylindrial oordinates R; � de�nedby X + 0:1 = R os �; Y = R sin �;the funtion U(X;Y ) = R2 �R21R sin �;is a solution of the Laplae equation in the Z-plane. Furthermore, by a well-known feature of onformal mappings, the funtion u(x; y) = U(X;Y ) is alsoa solution of the Laplae equation in the z-plane.Evaluating u(x; y) on the inner and outer boundaries gives the Dirih-let boundary ondition for the test problem. As illustrated in Figure 6, thesolution orresponds to the stream funtion for inompressible invisid owaround the airfoil, with zero irulation.The funtional, expressed in the Z-plane, is hosen to beZ 2�0 sin � �U�n ����R=R1 d�:
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 ;where h = R�11 sin �; on the inner boundary �
z1, and h = 0 on the outerboundary. Hene the dual problem is the Laplae equation subjet to theDirihlet boundary onditions v=h.The numerial results for both the primal and dual problems are al-ulated using the bilinear Galerkin �nite element method. Figure 5 illus-trates one of the grids used. The grid points in the z-plane are generated bythe onformal mapping of a regular polar grid in the Z-plane, but the useof isoparametri elements in the z-plane means the ells in the z-plane arequadrilaterals, and do not have urved edges.Figure 6 presents the primal and dual solutions. It an be seen that thegradient of the adjoint solution is singular at the usped trailing edge of theairfoil.The approximate solutions uh and vh are formed by bi-ubi spline in-terpolation. The oordinate data is also splined, so that the solutions andoordinates, uh; vh; xh; yh, are all de�ned parametrially as funtions of the
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Adjoint Error Corretion 233 Linear defet error orretionAdjoint error orretion is not the only means of improving the auray ofnumerial alulations. In this setion, based on Referene [Gil00℄, we lookat the use of defet orretion [BMM88,Kor88,Ske81,Ste78℄, and show thatit an be extremely e�etive in reduing the errors in a model 1D Helmholtzproblem; the ombination of defet and adjoint error orretion is even better.The primary motivation for this investigation is the need for high orderauray for aeroaousti and eletromagnetis alulations. In steady CFDalulations, grid adaptation an be used to provide high grid resolution inthe limited areas that require it. However, using standard seond order a-urate methods, the wave-like nature of aeroaousti and eletromagnetisolutions would lead to grid re�nement throughout the omputational do-main in order to redue the wave dispersion and dissipation to aeptablelevels. The preferable alternative is to use higher order methods, allowingone to use fewer points per wavelength, whih an lead to a very substantialredution in the total number of grid points for 3D alulations. The diÆultywith this is that one often wants to use unstrutured grids beause of theirgeometri exibility, and the onstrution of higher order approximations onunstrutured grids is ompliated and omputationally expensive.3.1 Problem desription and Galerkin methodThe model problem to be solved is the 1D Helmholtz equationu00 + �2u = 0; 0 < x < 10;subjet to the Dirihlet boundary ondition u=1 at x=0 and the radiationboundary ondition u0�i�u=0 at x=10. The analyti solution is u=exp(i�x)and the domain ontains preisely �ve wavelengths. The output funtional ofinterest is the value u(10) at the right hand boundary. This an be viewed asa model of a far-�eld boundary integral giving the radiated aousti energyin aeroaoustis, or the radar ross-setion in eletromagnetis [MS98℄.Integrating by parts, the weak form of the inhomogeneous equationu00 + �2u = f; 0 < x < 10;subjet to the same boundary onditions is�(w0; u0) + �2(w; u) + i�w�(10)u(10) = (w; f);for any di�erentiable w(x) with w(0) = 0. One important feature of thisHelmholtz problem is that the solution is omplex. Therefore the inner prod-ut (w; u) is de�ned as (w; u) � Z 100 w�u dx;



24 M.B. Giles and N.A. Pierewith w� denoting the omplex onjugate of w.The Galerkin solution on the irregular grid xj ; j = 0; 1; 2; : : : ; N , is de�nedas U(x) = NXj=0Uj�j(x)where the �j(x) are the usual pieewise linear `hat' funtions for whih�j(xi)=Æij . The value U0 is given by the Dirihlet boundary ondition. Thevalues of the other oeÆients Uj for j >0 are obtained from the equations�(�0i; U 0) + �2(�i; U) + i��i(10)U(10) = 0; i = 1; 2; : : : ; N:It is well established that this disretisation is seond order aurate, pro-duing dispersion but no dissipation on a uniform grid.3.2 Defet orretionThe �rst step in the defet orretion is to de�ne a new approximate solutionuh(x) by ubi spline interpolation of the nodal values Uj . The hoie ofend onditions for the ubi spline is very important. A natural ubi splinewould have u00h = 0 at both ends, but this would introdue small errors ateah end sine u00 6=0 for the analyti solution. Instead, at x=10 we requirethe splined solution to satisfy the analyti boundary ondition by imposingu0h � i�uh = 0. At x=0, the analyti boundary ondition is already imposedthrough having the orret value for the end point U(0). Therefore, here werequire that u00h + �2uh = 0 so the splined solution satis�es the o.d.e. at theboundary.The solution error, e = u(x)�uh(x) satis�es the inhomogeneous Helmholtzequation e00 + �2e = �(u00h+�2uh); 0 < x < 10;the right-hand-side of whih is the residual error of the approximation uh(x).Given the homogeneous Dirihlet boundary ondition at x=0, and the sameradiation boundary ondition at x=10, the Galerkin approximation to theerror is given by the equations�(�0i; E0) + �2(�i; E) + i��i(10)E(10) = �(�i; u00h+�2uh); i = 1; 2; : : : ; N:Adding the nodal orretions Ej to the original nodal values Uj gives a or-reted solution. The whole proedure an then be repeated to improve theauray. This follows the proedure desribed by Barrett et al who alsoshowed that it onverges to a solution of an appropriately de�ned Petrov-Galerkin disretisation, with the trial spae being the spae of ubi splines,while the test spae is the spae of pieewise linear funtions [BMM88℄.



Adjoint Error Corretion 253.3 Adjoint error orretionTo apply the linear theory to the Helmholtz problem, the �rst step is toonstrut the appropriate adjoint problem. Integration by parts reveals thatthe Helmholtz equation is self-adjoint, soL�v � v00 + �2v;and (v; Lu)� (L�v; u) = �vHAu�100 ;where u = � ududx � ; v = � vdvdx � ;and A = � 0 1�1 0� :At x = 10 we haveBu � u0 � i�u � Bu; B = (�i� 1) ;and Cu � u � Cu; C = (1 0) :To satisfy the adjoint identity (5) we require B� and C� suh thatA = ��C�B� �H �BC� :Solving this gives ��C�B� � = �BC ��HAH = � 1 0�i� �1�and hene B�v � �v0 � i�v and C�v � �v. Similarly, at x= 0, we obtainB�v = v and C�v = v0.Now, noting that in our appliation f =g=0, and h has value 0 at x=0and 1 at x=10, then the full spei�ation of the adjoint problem isv00 + �2v = 0; 0 < x < 10;with v=0 at x=0 and �v0 � i�v = 1 at x=10.Let vh be an approximate solution of this problem, obtained by the sameGalerkin and ubi spline reonstrution approah as uh, with or withoutdefet orretion. Noting that the ubi spline reonstrution ensures thatthe boundary onditions are satis�ed exatly, the orreted approximation tothe value u(10) is uh(10)� (vh; u00h+�2uh):



26 M.B. Giles and N.A. PiereThe theory gives the error in this orreted funtional as being(vh � v; u00h+�2uh):In the absene of defet orretion, both terms in this inner produt areseond order in the average grid spaing and so the error is fourth order.With defet orretion, the �rst term is fourth order while the seond termremains seond order. Therefore, the error remaining after the adjoint errororretion is sixth order.3.4 Numerial resultsNumerial results have been obtained for grids with 4, 8, 16, 32, 64 and 128points per wavelength. To test the ability to ope with irregular grids, theoordinates for the grid with N intervals are de�ned asx0 = 0; xN = 10; xj = 10N (j + �j) ; 0<j<N;where �j is a uniformly distributed random variable in the range [�0:3; 0:3℄.Figure 1 shows the L2 norm of the error in the reonstruted ubi splinesolution before and after defet orretion. Without defet orretion, theerror is seond order, while with defet orretion it is fourth order. Note thata seond appliation of defet orretion makes a signi�ant redution in theerror even though it remains fourth order. This is beause one appliationof the defet orretion proedure gives a orretion that is seond orderin magnitude, with a orresponding error that is seond order in relativemagnitude and therefore fourth order in absolute magnitude. It is this errorthat is orreted by a seond appliation of the defet orretion proedure.Figure 2 shows the error in the numerial value for the output funtionalu(10). Without any orretion, the error is seond order. Using either defetorretion or adjoint error orretion on their own inreases the order ofauray to fourth order, but using them both inreases the auray to sixthorder. Note that the alulation with 8 points per wavelength plus both defetand adjoint error orretion gives an error whih is approximately 2� 10�3.This is more aurate than the alulation with 128 points per wavelengthand no orretions, and omparable to the results using 14 points and defetorretion, or 30 points with adjoint error orretion.In 3D, the omputational ost is proportional to the ube of the numberof points per wavelength, so this indiates the potentially huge savings of-fered by the ombination of defet and adjoint error orretion. The ost ofomputing the orretions is �ve times the ost of the original alulation,due to the additional two alulations for the defet orretion, and the oneadjoint alulation plus its two defet orretions. In pratie, the seonddefet orretion for the primal and adjoint alulations make negligible dif-ferene to the value obtained after the adjoint error orretion, so these anbe omitted, reduing the ost of the orretions to just three times the ostof the original alulation.
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28 M.B. Giles and N.A. Piere4 Nonlinear adjoint error orretionThis setion looks at the extension from the linear theory to handle nonlinearproblems. It begins with some preliminaries that address the key issues inlinearising nonlinear funtions and operators.4.1 PreliminariesIf u is a salar variable and f(u) is a nonlinear salar funtion then a standardTaylor series expansion givesf(u2) = f(u1) + f 0(u1) (u2�u1) +O((u2�u1)2):However, one an obtain an exat expression without any remainder termsby starting fromdd� f (u1+�(u2�u1)) = f 0 (u1+�(u2�u1)) (u2 � u1);and then integrating this from �=0 to �=1 to obtainf(u2)� f(u1) = f 0(u1;u2) (u2 � u1);where f 0(u1;u2) � Z 10 f 0 (u1+�(u2�u1)) d�:If u and f are vetors, we need to de�ne the Jaobian matrixAu = �f�u ����u ;with the subsript u denoting the fat that the value of the Jaobian matrixdepends on the value of u around whih f(u) is linearised. We then obtaindd� f (u1+�(u2�u1)) = Au1+�(u2�u1) (u2�u1)so integrating over � givesf(u2)� f(u1) = A(u1;u2) (u2�u1);where A(u1;u2) = Z 10 �f�u ����u1+�(u2�u1) d�:The next step is to onsider a nonlinear operator N(u). The linearisedoperator Lu is alled a Fr�ehet derivative, and it is formally de�ned byLu~u � lim"!0 N(u+ "~u)�N(u)"



Adjoint Error Corretion 29Again the subsript u denotes the fat that the linear operator matrix de-pends on the value of u around whih N(u) is linearised. For example, ifN(u) = ��x �12u2�� � �2u�x2then Lu~u = ��x �u ~u�� � �2~u�x2The �nal step in these preliminaries is to start fromdd� N �u1+�(u2�u1)� = Lu1+�(u2�u1) (u2�u1)and then integrate over � to obtainN(u2)�N(u1) = L(u1;u2) (u2�u1);where L(u1;u2) = Z 10 Lju1+�(u2�u1) d�:Thus L(u1;u2) is the average value of the linear operator Lu over the \path"from u1 to u2.4.2 Nonlinear theoryLet u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subjet to the nonlinear boundary onditionsD(u) = 0;on the boundary �
.The linear di�erential operators Lu and Bu are de�ned to be the Fr�ehetderivatives of N and D, respetively,Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear funtional of interest, J(u), has a Fr�ehetderivative of the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h;Cu~u)�
 :



30 M.B. Giles and N.A. PiereHere the dimension of the operator Cu (whih may be di�erential) is requiredto equal the dimension of the adjoint boundary operator B�u, to be de�nedshortly.The orresponding linear adjoint problem isL�uv = g(u)in 
, subjet to the boundary onditionsB�uv = hon the boundary �
. The adjoint identity de�ning L�u, B�u and the boundaryoperator C�u is(v; Lu~u) + (C�uv;Bu~u)�
 = (L�uv; ~u) + (B�uv; Cu~u)�
 ; (6)for all ~u; v.We now onsider approximate solutions uh; vh of the primal and dualproblems, respetively. The analysis will use the quantitiesL�uhvh; B�uhvh; C�uhvh:Note that these an be evaluated sine uh and vh are both known, whereas wewould not be able to evaluate the Fr�ehet derivatives based on the unknownanalyti solution u.The analysis also requires averaged Fr�ehet derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;so that, as explained in the preliminaries,N(uh)�N(u) = L(u;uh) (uh�u);D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h;C(u;uh)(uh�u))�
 :



Adjoint Error Corretion 31We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h;C(u;uh)(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h;Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:In the �nal result, the �rst line is the adjoint orretion term takinginto aount the residual errors in satisfying both the p.d.e. and the bound-ary onditions. The other lines are the remaining errors, whih inlude theonsequenes of nonlinearity in L;B;C and g as well as residual errors inapproximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linearadjoint problem are of the same order, and they are both suÆiently smooththat the orresponding residual errors are also of the same order, then theorder of auray of the funtional approximation after making the adjointorretion is twie the order of the primal and adjoint solutions. However,rigorous a priori and a posteriori analysis of the remaining errors is muhharder than in the linear ase [PG98℄ and pratial a posteriori error boundshave yet to be obtained for the quasi-1D and 2D Euler equations.



32 M.B. Giles and N.A. Piere4.3 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the ow of an ideal ompressibleuid in a variable area dut areddx (AF )� dAdx P = 0;where A(x) is the ross-setional area of the dut and U , F and P are de�nedas U = 0� ��q�E1A ; F = 0� �q�q2 + p�qH 1A ; P = 0�0p01A :Here � is the density, q is the veloity, p is the pressure, E is the total energyand H is the stagnation enthalpy. The system is losed by the equation ofstate for an ideal gas.The funtional of interest is the `lift'J = Z p dx:The Fr�ehet derivative operator isLu~u � ddx �A �F�u ~u�� dAdx �P�u ~u;and therefore the orresponding adjoint equations areL�uv � �A��F�u�T dvdx � dAdx ��P�u�T v = ��p�u�T :The equations are approximated using a standard seond order �nite vol-ume method with harateristi smoothing on a uniform omputational grid.The linear adjoint problem is approximated by the so-alled `ontinuous'method, in whih one disretises the analyti adjoint equations on the sameuniform grid as the ow solution [AV99,Jam95℄. In the alternative `disrete'approah, one starts with the disretised nonlinear ow equations, linearisesthem and then uses the transpose of the linear matrix as the disrete adjointoperator [EP97℄. Previous researh has shown that both approahes produeapproximate solutions whih onverge to the analyti adjoint solution, whihhas been determined in losed form for the quasi-1D Euler equations [GP01℄.The approximate solution uh(x) is onstruted from the disrete owsolution by ubi spline interpolation of the nodal values of the three om-ponents of the state vetor U . Similarly, the approximate adjoint solutionvh(x) is obtained by ubi spline interpolation of the nodal values of thethree omponents of the disrete adjoint solution. The integrals that formthe base value for the funtional and the adjoint orretion are approximatedby 3-point Gaussian quadrature.
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38 M.B. Giles and N.A. Piere5 Grid adaptationIn this setion we very briey outline a number of possible strategies for gridadaptation based on a posteriori error estimates for output funtionals. Ineah ase we express reservations about the justi�ation of using the strategy,while reognising that in the end an aeptable justi�ation may be that itprovides a robust re�nement riterion in pratie.5.1 Option 1: magnitude of orretion termFor nonlinear adjoint error orretion, the dominant orretion term is theinterior integral inner produt (vh; N(uh)), whih an be expressed as a sumof ontributions from eah ell in the domain(vh; N(uh)) �X� (vh; N(uh))�:One adaptive strategy is to subdivide those ells for whih(vh; N(uh))�is bigger than some tolerane.M�uller and Giles have tried this approah for subsoni and transoni airfoilalulations [MG01℄, but the results are little better than using an ad homethod based on pressure di�erenes aross eah ell.One questionable aspet of this strategy is that the purpose of the ad-joint error orretion is to evaluate and orret for this term, so what is thejusti�ation for trying to make it small? Is it not better to try to make theremaining error small?5.2 Option 2: estimated remaining error termAfter making the adjoint error orretion, the main remaining error term anbe expressed as (v�vh; N(uh)) :The diÆulty with this expression is that the analyti adjoint solution v isnot known. One option therefore is to estimate it and then adapt those ellsin whih (v�vh; N(uh))�is greater than some tolerane.The problem is how to estimate v. Rannaher et al [BR96,BR01℄ use aquadrati reonstrution to estimate v, having used a pieewise linear �niteelement solution for vh. However, if the quadrati reonstrution is a betterapproximation to v than the pieewise linear one, might it not be better to



Adjoint Error Corretion 39use the quadrati reonstrution as the approximate solution vh and therebyget a more aurate adjoint error orretion?It might appear that another possible ritiism of this approah is that itassumes that the solution error v�vh is primarily a loal interpolation error,whereas it may be due to trunation errors in an entirely di�erent part of thegrid. However, for a Galerkin �nite element method, beause of orthogonalitythe quantity (v�vh; N(uh))has the same value for any vh in the appropriate �nite element spae. There-fore, it is permissible to onsider a di�erent vh whih is an interpolant ofv, so v�vh is then an interpolation error whih an be estimated using theomputed adjoint solution.The approah used by Venditti & Darmofal [VD01℄ is an extension of thatused by Rannaher et al. An alternative, approximately equivalent form forthe dominant part of the remaining error is(Rh; u�uh);where Rh � L�uhvh�g(uh) is the residual error in satisfying the adjoint p.d.e.Therefore, they adapt any ell in whih the sum��(v�vh; N(uh))��� + ��(Rh; u�uh)���is greater than some threshold. The analyti solutions u and v are againapproximated by a higher order reonstrution. Beause they use a �nitevolume method to alulate uh and vh, the replaement of v�vh by a loalinterpolation error does not have the same theoretial justi�ation as withthe Galerkin method. On the other hand, it does seem an exellent idea totake into aount the residual errors of the adjoint problem, and they do usethe more aurate reonstrution of the approximate solution to obtain theorretion to the value of the funtional. The numerial results they obtain arevery good; Figure 16, taken from [VD01℄, illustrates the results they obtainfor a three-element airfoil alulation. It shows the adapted grid obtainedusing their re�nement riterion, as well as the improved auray of the liftpredition with and without adjoint orretion, ompared to a sequene ofuniformly-re�ned grids.5.3 Option 3: oarse grid error estimatesUsing the residual errors from both the original and adjoint problems, thedominant remaining error an be expressed as�L�uh�1Rh; N(uh)� � �Rh; L�1uhN(uh)�
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Adjoint Error Corretion 41The problem with using this in an adaptive approah is that L�1uh is a globaloperator. However, it might be possible to use a oarse grid to approximatelyevaluate L�1uhN(uh) and L�uh�1Rh, and then adapt in any ell � for whih��� �L�uh�1Rh; N(uh)�����+ ��� �Rh; L�1uhN(uh)�����is bigger than some tolerane. This approah may also give a useful a poste-riori bound on the total remaining error.The ritiism that an be levelled at this idea is that it requires thealulation of the quantity L�1uhN(uh) whih is essentially a defet orretion.In that ase, is it not better to use this to further improve the auray of thesolution and hene the funtional, rather than bound the remaining error?Yet again, it appears there is a hoie to be made between improvedauray or a tight bound. If we hoose the improved auray then we anstill use the suggested measure as a re�nement riterion, but we are re�ningbased on the estimated magnitude of one part of the orreted error, ratherthan on the estimated remaining error. It may still prove to be a usefuladaptation riterion, but its rational basis has been ompromised.5.4 Multiple funtionalsA last omment onerns the situation in whih there are several di�erentfuntionals of onern, suh as lift, drag and pithing moment. How shouldall of these be inorporated into the adaptation riterion?One ould perform a separate adjoint alulation for eah. This would beneessary if one wished to perform an adjoint error orretion to improve theauray of eah of the output funtionals. Alternatively, following options 1and 2 above, one ould adapt wheneverV� Z� jN(uh)j dAexeeds some threshold, with V� representing the magnitude of the typialadjoint solution in ell � (big near the airfoil, tending to zero far away) iffollowing option 1, or a orresponding interpolation error estimate for option2.



42 M.B. Giles and N.A. Piere6 Future researh diretionsIn this onluding setion, we o�er some thoughts about diretions for futureresearh. Some of these are spei� to adjoint error orretion, but mostapply more generally to the subjet of a posteriori error analysis and gridadaptation for funtional outputs.6.1 Grid adaptationAs indiated in the previous setion, grid adaptation remains a topi forfuture researh. Being pratial, there is no need for a \perfet" adaptivestrategy, even if one ould de�ne what that would be. The important riterionfor suess is that the strategy should be robust and produe onsistentlygood results for a wide variety of problems. It is also important that forproblems with singularities, for whih it is known that the standard orderof auray (expressed in terms of the number of nodes/ells used) an bereovered with the appropriate degree of loal grid resolution, the adaptivestrategy should automatially aomplish this.Two other adaptation issues to be addressed are anisotropi re�nementand grid redistribution. Currently, most adaptive strategies use grid re�ne-ment, adding additional nodes/ells through an isotropi re�nement proessthat loally re�nes equally in eah diretion, giving ells with a bounded as-pet ratio. This is good for many appliations, but far from ideal for others.One example is the invisid ow around a wing. Here the grid resolutionnormal to the leading edge needs to be muh �ner than the spanwise resolu-tion. In this ase, anisotropi re�nement is probably the best solution. Thismeans adding nodes in suh a way that the resolution normal to the leadingedge is greater than in the spanwise resolution. The question this poses ishow to deide whih diretion requires additional resolution? There are al-ready ad ho re�nement methods that address this. The hallenge will be toextend the a posteriori adjoint-based re�nement indiators to give a morequantitative answer to this question.Another more extreme example of the need for anisotropi resolution isa boundary layer on a wing, where there is learly a need for muh betterresolution aross the boundary layer than in the other two diretions. In thisase, the best solution may well be grid redistribution, moving existing gridnodes to provide the resolution where it is needed. Again there are goodexisting ad ho methods for doing this and the hallenge is how to developnew methods using a posteriori error estimates.



Adjoint Error Corretion 436.2 Asymptoti error boundsIdeally, we would like to have our ake and eat it too! We would like to usesmooth reonstrution and adjoint error orretion to generate extremelyaurate funtional values, and at the same time still be able to bound theremaining error with bounds that are at least asymptotially valid and fairlytight.As suggested in the previous setion, this may be unahievable. Theremay be a hoie to be made between using smooth reonstruted solutionsfor defet and/or adjoint error orretion, or for tight error bounds. If so, thenour preferene would be for the inreased auray. However, this de�nitelymerits further researh.6.3 Smooth reonstrution on unstrutured gridsOne key issue is going to be the smooth reonstrution of approximate solu-tions in multiple dimensions on unstrutured grids. On a strutured grid, u-bi spline interpolation an be used in eah diretion, but on an unstruturedgrid there is a need for a suitable generalisation of ubi spline interpolationto produe a reonstruted solution of suÆient smoothness.Venditti & Darmofal have ahieved some suess with a pieewise quadratireonstrution using least squares minimization in the H1 Sobolev norm[VD01℄. In unpublished researh, this loal approximation has been suÆ-ient for them to obtain results doubling the order of auray of funtionaloutputs from a Galerkin approximation of a onvetion-di�usion equation.However, there is reason to believe that in general the solution at thenodes of an unstrutured grid may not be very smooth. In partiular, thesolution error, ei = ui � u(xi)may not be very smooth, and therefore even if ei = O(h2), any interpolationmay lead to a reonstrution errore(x) = uh(x) � u(x)for whih re = O(h). This loss of auray beause of the loss of smoothnesswould ompletely negate the ability of the adjoint error orretion to improveupon the auray of �nite element solutions.To avoid this, it seems likely that it will be neessary to use some formof smoothed spline reonstrution, in whih the spline does not interpolatethe nodal values, but instead ompromises between the twin objetives ofmathing the omputed data and maintaining smoothness. For example, ifUh is a seond order aurate pieewise linear �nite element solution, thenthe reonstrution uh ould be de�ned by some suitable approximation tothe equation h2r2(r2uh) + uh � Uh = 0:



44 M.B. Giles and N.A. PiereThe purpose of the bi-harmoni term is to ensure the smoothness of the so-lution. The h2 weighting ensures that this is not ahieved at the expense ofsari�ing the seond order auray of the underlying solution. Some pre-liminary numerial analysis for problems with periodi boundary onditions[GS02℄ on�rms that this should have the desired smoothing e�et, but it hasyet to be implemented and tested.6.4 ShoksOne last hallenge we wish to highlight is the problem of shoks and otherdisontinuities.With the quasi-1D Euler equations, it an be proved that with an appro-priate onservative formulation, and a numerial disretisation that is seondorder aurate when the solution is smooth, the auray of output fun-tionals suh as the integrated pressure is also seond order [Gil96℄. However,numerial evidene suggests this is not the ase in multiple dimensions, andinstead there is an error in quantities suh as the lift on a transoni airfoilthat is proportional to the loal grid spaing at the shok. Thus, to get evenseond order auray would require anisotropi grid adaptation so that thegrid spaing at the shok is O(h2), with h here being the average grid spaingin the rest of the grid.Appliation of adjoint error orretion ideas raises another problem. Thereonstruted solution will be ontinuous, whereas the true solution is dis-ontinuous. Therefore, it is unavoidable that there is an O(1) error in the ap-proximate solution at the shok. This violates the whole basis for the adjointerror orretion sine it relies on a linearisation of the nonlinear equationsthat is valid only for small perturbations.We are urrently working on this problem. Our approah is to numeri-ally approximate a \visous" shok with the level of visosity being O(h2).The adjoint error orretion then has to orret for the numerial error inapproximating the visous shok, plus the analyti error in using the visousshok problem to approximate the invisid shok problem. This latter partrequires the use of mathed asymptoti expansions to understand that toleading order there is a linear dependene of integral funtionals on the levelof visosity. This error an be ompensated for by using the visous adjointto give the sensitivity of the lift to a hange in the level of the visosity.AknowledgementsIn the ourse of the researh disussed in these notes, we have bene�ted fromstimulating disussions with many people, inluding in partiular Endre S�uli,Paul Houston, David Darmofal and Rolf Rannaher.Our researh has been supported by EPSRC grants GR/K91149 andGR/L95700,and by NASA/Ames Cooperative Agreement No. NCC2-5431.
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