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Abstract In this paper we develop antithetic multilevel Monte Carlo (MLMC) esti-
mators for multidimensional SDEs driven by Brownian motion. Giles has previously
shown that if we combine a numerical approximation with strong order of conver-
gence O(∆ t) with MLMC we can reduce the computational complexity to estimate
expected values of Lipschitz functionals of SDE solutions with a root-mean-square
error of ε from O(ε−3) to O(ε−2). However, in general, to obtain a rate of strong
convergence higher than O(∆ t1/2) requires simulation, or approximation, of Lévy
areas. Recently, Giles and Szpruch [5] constructed an antithetic multilevel estimator
that avoids the simulation of Lévy areas and still achieves an MLMC correction vari-
ance which is O(∆ t2) for smooth payoffs and almost O(∆ t3/2) for piecewise smooth
payoffs, even though there is only O(∆ t1/2) strong convergence. This results in an
O(ε−2) complexity for estimating the value of financial European and Asian put
and call options. In this paper, we extend these results to more complex payoffs
based on the path minimum. To achieve this, an approximation of the Lévy areas
is needed, resulting in O(∆ t3/4) strong convergence. By modifying the antithetic
MLMC estimator we are able to obtain O(ε−2 log(ε)2) complexity for estimating
financial barrier and lookback options.

1 Introduction

In his original MLMC paper [4], Giles showed that one could obtain a good MLMC
variance for smooth payoffs by using a numerical approximation with good strong
convergence properties. This is in contrast to the standard Monte Carlo approach
to simulations of SDEs, where only a good weak order of convergence is required.
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For multidimensional SDEs, to obtain good strong convergence, simulation of the
Lévy areas is required. Indeed, Clark & Cameron [1] proved for a particular SDE
that it is impossible to achieve a better order of strong convergence than the Euler-
Maruyama discretisation when using just the discrete increments of the underlying
Brownian motion. The analysis was extended by Müller-Gronbach [8] to general
SDEs. As a consequence, if we use the standard MLMC method with the Milstein
scheme without simulating the Lévy areas the complexity will remain the same
as for Euler-Maruyama. Recently, Giles and Szpruch [5] constructed an antithetic
MLMC estimator, enabling one to neglect the Lévy areas and still obtain a multi-
level correction estimator with a variance which decays at the same rate as the scalar
Milstein estimator. They achieved an O(∆ t2) MLMC variance for smooth payoffs
and almost an O(∆ t3/2) variance for piecewise smooth payoffs, even though there
is only O(∆ t1/2) strong convergence. This results in an O(ε−2) complexity for esti-
mating the value of European and Asian put and call options.

The question remains whether the approach can be extended to more complex
payoffs such as those based on the minimum of the path over the simulation in-
terval. For scalar SDEs with the Milstein discretisation, Giles [4] obtained O(ε−2)
complexity for such payoffs by combining MLMC with conditional Monte Carlo
methods. In this paper, we extend these results to the multidimensional case. Un-
like the previous multidimensional work, we find that a suitable approximation to
the Lévy areas is required. By a suitable modification of the antithetic MLMC es-
timator we are able to obtain O(ε−2 log(ε)2) complexity for payoffs corresponding
to financial lookback and barrier options. We focus on simulations of Clark and
Cameron’s SDE since it captures the essence of simulations requiring Lévy area
simulation to obtain higher that O(∆ t1/2) strong convergence property. Our results
are supported by numerical experiments.

2 MLMC

Multilevel Monte Carlo simulation uses a number of levels of resolution, ` =
0,1, . . . ,L, with ` = 0 being the coarsest, and ` = L being the finest. In the con-
text of an SDE simulation, level 0 may have just one timestep for the whole time
interval [0,T ], whereas level L might have 2L uniform timesteps ∆ tL = 2−LT . If P
denotes the payoff (or other output functional of interest), and P̀ denote its approx-
imation on level `, then the expected value E[PL] on the finest level is equal to the
expected value E[P0] on the coarsest level plus a sum of corrections which give the
difference in expectation between simulations on successive levels,

E[PL] = E[P0]+
L

∑
`=1

E[P̀ − P̀ −1]. (1)

Let Y0 be an estimator for E[P0] using N0 samples, and let Y`, ` > 0, be an esti-
mator for E[P̀ − P̀ −1] using N` samples. The simplest estimator is a mean of N`
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independent samples, which for ` > 0 is

Y` = N−1
`

N`

∑
i=1

(Pi
`−Pi

`−1). (2)

The key point is that Pi
`−Pi

`−1 should come from two discrete approximations for
the same underlying stochastic sample.

We recall the Theorem from [5]:

Theorem 1. Let P denote a functional of the solution of a stochastic differential
equation, and let P̀ denote the corresponding level ` numerical approximation. If
there exist independent estimators Y` based on N` Monte Carlo samples, and positive
constants α,β ,γ,c1,c2,c3 such that α≥ 1

2 min(β ,γ) and

i) |E[P̀ −P]| ≤ c1 2−α `

ii) E[Y`] =

{
E[P0], `= 0

E[P̀ −P̀ −1], ` > 0
iii)V[Y`]≤ c2 N−1

` 2−β `

iv)C` ≤ c3 N` 2γ `, where C` is the computational complexity of Y`

then there exists a positive constant c4 such that for any ε < e−1 there are values
L and N` for which the multilevel estimator Y = ∑

L
`=0 Y`, has a mean-square-error

with bound MSE ≡ E
[
(Y −E[P])2

]
< ε2 with a computational complexity C with

bound

C ≤


c4 ε−2, β > γ,

c4 ε−2(logε)2, β = γ,

c4 ε−2−(γ−β )/α , 0 < β < γ.

In (2) we have used the same estimator for the payoff P̀ on every level `, and there-
fore (1) is a trivial identity due to the telescoping summation. However, in [3] Giles
explained that it can be better to use different estimators for the finer and coarser of
the two levels being considered, P f

` when level ` is the finer level, and Pc
` when level

` is the coarser level. In this case, we require that

E[P f
` ] = E[Pc

` ] for `= 0, . . . ,L−1, (3)

so that E[P f
L ] = E[P f

0 ]+∑
L
`=1E[P

f
` −Pc

`−1]. The MLMC Theorem is still applicable
to this modified estimator. The advantage is that it gives the flexibility to construct
approximations for which P f

` −Pc
`−1 is much smaller than the original P̀ − P̀ −1,

giving a larger value for β , the rate of variance convergence in condition iii) in the
theorem. In the next sections we demonstrate how suitable choice of P f

` and Pc
` can

dramatically increase the convergence of the variance of the MLMC estimator.
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2.1 Milstein Scheme

Let (Ω ,F ,{Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions, and let w(t) be a m-dimensional Brownian motion
defined on the probability space. We consider the numerical approximation of SDEs
of the form

dx(t) = f (x(t)) dt +g(x(t)) dw(t), (4)

where x(t)∈Rd for each t≥0, f ∈C2(Rd ,Rd), g∈C2(Rd ,Rd×m) have bounded first
and second derivatives, and for simplicity we assume a fixed initial value x0 ∈ Rd .

For Lipschitz continuous payoffs that depend on finite number of times t`n = n∆ t`,
the MLMC variance can be estimated from the strong convergence of the numerical
scheme, that is(

E
[

sup
0≤n≤2`

∥∥∥x(t`n)−X `
n

∥∥∥p])1/p

= O(∆ tξ

` ) for p≥ 2.

For partition P∆ t` := {n∆ t` : n = 0,1,2, ...,2` = N}, where ∆ t` = T/N, we consider
the Milstein approximation X `

n with ith component of the form

X `
i,n+1 =X `

i,n + fi(X `
n)∆ t`+

m

∑
j=1

gi j(X `
n)∆w`

j,n

+
m

∑
j,k=1

hi jk(X `
n)
(

∆w`
j,n∆w`

k,n−δ j,k ∆ t`− [A`
jk]

tn+1
tn

) (5)

where hi jk(x) = 1
2 ∑

d
l=1 glk(x)

∂gi j
∂xl

(x), δ j,k is a Kronecker delta, ∆w`
n = w((n+

1)∆ t`)−w(n∆ t`) and [A`
jk]

tn+1
tn is the Lévy area defined as

[A`
jk]

tn+1
tn =

∫ t`n+1

t`n

(
w j(t)−w j(t`n)

)
dwk(t)−

∫ t`n+1

t`n

(
wk(t)−wk(t`n)

)
dw j(t). (6)

For the Milstein scheme ξ = 1 and therefore β =2 for smooth payoffs, and hence
MLMC has complexity O(ε−2). However, there is no method for simulating Lévy
areas with a cost per timestep similar to that of Brownian increments, apart from
in dimension 2 [2, 9, 10]. Furthermore, within computational finance, options are
often based on the continuously-monitored minimum (or maximum) or the path.
The Milstein scheme gives an improved rate of convergence at the simulation times,
but to maintain the strong order of convergence for such path-dependent options we
use Brownian Bridge interpolation within each timestep [t`n, t

`
n+1]

X̃ `(t) = X `
n +λ` (X `

n+1−X `
n)+g(X `

n)
(

w(t)−w(t`n)−λ ∆w`
n

)
(7)

where λ` ≡ (t− t`n)/∆ t`. Using this interpolant, we have the result [7]
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E
[

sup
0≤t≤T

∥∥∥x(t)− X̃ `(t)
∥∥∥p]

= O(| ∆ t` log(∆ t`) |p).

3 Antithetic MLMC estimator

The idea for the antithetic estimator is to exploit the flexibility of the more general
MLMC estimator by defining Pc

`−1 to be the usual payoff P(Xc) coming from a
level `−1 coarse simulation Xc, and define P f

` to be the average of the payoffs
P(X f ),P(Xa) coming from an antithetic pair of level ` simulations, X f and Xa.

X f will be defined in a way which corresponds naturally to the construction
of Xc. Its antithetic “twin” Xa will be defined so that it has exactly the same dis-
tribution as X f , conditional on Xc, which ensures that E[P(X f )] = E[P(Xa)] and
hence (3) is satisfied, but at the same time

(
X f −Xc

)
≈ −(Xa−Xc) and therefore(

P(X f )−P(Xc)
)
≈ −(P(Xa)−P(Xc)) , so that 1

2

(
P(X f )+P(Xa)

)
≈P(Xc). This

leads to 1
2

(
P(X f )+P(Xa)

)
−P(Xc) having a much smaller variance than the stan-

dard estimator P(X f )−P(Xc). It was proved in [5], that if
∥∥∥ ∂P

∂x

∥∥∥≤ L1,
∥∥∥ ∂ 2P

∂x2

∥∥∥≤ L2.

then for p≥ 2,

E
[( 1

2 (P(X
f )+P(Xa))−P(Xc)

)p
]

≤ 2p−1 Lp
1 E
[∥∥ 1

2 (X
f +Xa)−Xc∥∥p

]
+ 2−p−1 Lp

2 E
[∥∥X f −Xa∥∥2p

]
.

In the multidimensional SDE we will show that the Milstein approximation with the
Lévy areas set to zero, combined with the antithetic construction, leads to X f −Xa =

O(∆ t1/2) but 1
2 (X

f+Xa)−Xc =O(∆ t). Hence, the variance V[ 1
2 (P

f
` +Pa

` )−Pc
`−1] is

O(∆ t2) for smooth payoffs, which is the same order obtained for scalar SDEs using
the Milstein discretisation with its first order strong convergence.

4 Clark-Cameron example

The Clark and Cameron model problem [1] is

dx1(t) = dw1(t), dx2(t) = x1(t)dw2(t), (8)

with x1(0) = x2(0) = 0, and zero correlation between the two Brownian motions
w1(t) and w2(t). These equations can be integrated exactly over a time interval
[tn, tn+1], where tn = n∆ t, to give

x1(tn+1) = x1(tn)+∆w1,n

x2(tn+1) = x2(tn)+ x1(tn)∆w2,n +
1
2 ∆w1,n∆w2,n +

1
2 [A12]

tn+1
tn (9)
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Fig. 1 Brownian path w, its piecewise linear interpolations wc and w f , and the antithetic wa, for a
single coarse timestep. The circles denote the points at which the Brownian path is sampled.

where ∆wi,n ≡ wi(tn+1)−wi(tn), and [A12]
tn+1
tn is the Lévy area defined in (6). This

corresponds exactly to the Milstein discretisation presented in (5), so for this sim-
ple model problem the Milstein discretisation is exact. The point of Clark and
Cameron’s paper is that for any numerical approximation X(T ) based solely on
the set of discrete Brownian increments ∆w, E[(x2(T )−X2(T ))2] ≥ 1

4 T ∆ t. Since
in this section we use superscript f ,a,c for fine X f , antithetic Xa and coarse Xc

approximations, respectively, we drop the superscript ` for the clarity of notation.
We define a coarse path approximation Xc with timestep ∆ t, and times tn ≡ n∆ t,

by neglecting the Lévy area terms to give

Xc
1,n+1 = Xc

1,n +∆w`−1
1,n

Xc
2,n+1 = Xc

2,n +Xc
1,n∆w`−1

2,n + 1
2 ∆w`−1

1,n ∆w`−1
2,n (10)

This is equivalent to replacing the true Brownian path by a piecewise linear ap-
proximation as illustrated in Figure 1. Similarly, we define the corresponding two
half-timesteps of the first fine path approximation X f . Using

∆w`−1
n+1 ≡ (w(tn+1)−w(tn))

= (w(tn+1)−w(tn+1/2))+(w(tn+1/2)−w(tn)) ≡ ∆w`
n+1/2 +∆w`

n,

we can combine two half-timestep approximations to obtain an equation for the
increment over the coarse timestep,
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X f
1,n+1 = X f

1,n +∆w`−1
1,n

X f
2,n+1 = X f

2,n +X f
1,n ∆w`−1

2,n + 1
2 ∆w`−1

1,n ∆w`−1
2,n (11)

+ 1
2

(
∆w`

1,n ∆w`
2,n+1/2−∆w`

2,n ∆w`
1,n+1/2

)
.

The antithetic approximation Xa
n is defined by exactly the same discretisation

except that the Brownian increments ∆w`
n+1/2 and ∆w`

n+1 are swapped, as illustrated
in Figure 1. This gives

Xa
1,n+1 = Xa

1,n +∆w`−1
1,n ,

Xa
2,n+1 = Xa

2,n +Xa
1,n ∆w`−1

2,n + 1
2 ∆w`−1

1,n ∆w`−1
2,n (12)

− 1
2

(
∆w`

1,n ∆w`
2,n+1/2−∆w`

2,n ∆w`
1,n+1/2

)
.

Swapping ∆w`
n and ∆w`

n+1/2 does not change the distribution of the driving Brow-
nian increments, and hence Xa has exactly the same distribution as X f . Note also
the change in sign in the last term in (11) compared to the corresponding term in
(12). This is important because these two terms cancel when the two equations are
averaged.

In [5] Giles and Szpruch proved the following result:

Lemma 1. If X f
n , Xa

n and Xc
n are as defined above, then

X f
1,n = Xa

1,n = Xc
1,n,

1
2

(
X f

2,n +Xa
2,n

)
= Xc

2,n, n = 1,2, . . . ,N ≡ 2`−1.

and
E
[∣∣∣X f

2,N−Xa
2,N

∣∣∣p]= O(∆ t p/2) for p≥ 2.

This allows us to prove that for payoffs which are a smooth function of the final
state the MLMC variance

V
[

1
2

(
P(X f

N)+P(Xa
N)
)
−P(Xc

N)
]

has an O(∆ t2) upper bound and therefore the complexity of the MLMC estimator is
O(ε2). This matches the convergence rate and complexity for the multilevel method
for scalar SDEs using the standard first order Milstein discretisation, and is much
better than the O(∆ t) MLMC convergence obtained with the Euler-Maruyama dis-
cretisation. Very few financial payoff functions are twice differentiable on the entire
domain, but Giles and Szpruch have proved that for piecewise smooth put and call
options the variance converges with rate O(∆ t3/2), assuming local boundedness of
the density of the SDE solution (4) near the strike [5].

To perform numerical experiments we closely follow the algorithm prescribed in
[4, Section 5] with predefined root-mean-square errors ε = [1,2,4,8,16]×10−4:
1. start with level `= 0
2. estimate variance using initial 104 samples
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Fig. 2 Clark/ Cameron model problem with payoff max(0,x2(1)−1).

3. evaluate optimal number of samples on each level as in [4, Section 5]
4. if L≥ 2, test for convergence [4, Section 5]
5. if L < 2 or not converged, set ` := `+1 and go to 2.

In addition, we used 106 samples to generate the plots where we estimate the rate of
the strong and weak errors.

Figure 2 presents results for the payoff function P = max(0,x2(1)− 1) applied
to Clark and Camerson model problem with initial conditions x1(0) = x2(0) = 1.
The top left plot with the superimposed reference slope with rate 1.5 shows that the
variance P̀ − P̀ −1 is O(∆ t1.5

` ). The top right plot shows that E[P̀ − P̀ −1] = O(∆ t`).
The bottom left plot shows ε2 C where C is the computational complexity as defined
in Theorem 1. The plot is versus ε , and the nearly horizontal line confirms that
the MLMC complexity is O(ε−2), whereas the standard Monte Carlo approach has
complexity O(ε−3). For accuracy ε = 10−4, the antithetic MLMC is approximately
500 times more efficient than standard Monte Carlo. The bottom right plot shows
that V[X `

2,N−X `−1
2,N ] = O(∆ t`), corresponding to the standard strong convergence of

order 0.5.
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5 Subsampling of Levy areas

Consider now a Brownian path w(t) on the interval [0,T ] with N sub-intervals of
size ∆ t=T/N. We define wn ≡ w(n∆ t) and ∆wn ≡ wn+1−wn.

Lemma 2. The Lévy area for w(t) can be expressed as

[A jk]
T
0 =

N−1

∑
n=0

(
(w j,n−w j,0)∆wk,n− (wk,n−wk,0)∆w j,n +[As

jk]
(n+1)∆ t
n∆ t

)
where [As

jk]
(n+1)∆ t
n∆ t is the Lévy area for the sub-interval [n∆ t,(n+1)∆ t].

Proof. This follows from the definition of the Lévy area by expressing the integral
over [0,T ] as the sum of integrals over each of the sub-intervals, and using the
identity w(t)−w(0) = (wn−w0) + (w(t)−wn)) to evaluate the integral on the nth

sub-interval.

Ignoring the sub-interval Lévy areas [As
jk]

(n+1)∆ t
n∆ t , which corresponds to using

the expected value of [A jk]
T
0 conditional on {w(n∆ t)}0≤n≤N , gives the Lévy area

approximation:

[L jk]
T
0 =

N−1

∑
n=0

(
(w j,n−w j,0)∆wk,n− (wk,n−wk,0)∆w j,n

)
.

We denote by [La
jk]

T
0 the corresponding antithetic quantity generated by reversing

the order of the Brownian increments ∆wN ,∆wN−1, . . . ,∆w1. The antithetic label is
due to the following lemma:

Lemma 3.
[La

jk]
T
0 =−[L jk]

T
0 .

Proof.

[La
jk]

T
0 =

N−1

∑
n=0

n−1

∑
m=0

∆w j,N−1−m∆wk,N−1−n−∆wk,N−1−m∆w j,N−1−n

=
N−1

∑
m′=0

N−1

∑
n′=m′+1

∆w j,n′∆wk,m′ −∆wk,n′∆w j,m′

= −
N−1

∑
n′=0

n′−1

∑
m′=0

∆w j,m′ ∆wk,n′ −∆wk,m′ ∆w j,n′

= − [L jk]
T
0

The second line in the proof uses the substitutions m′=N−1−n, n′=N−1−m, and
the third line simply switches the order of summation.
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5.1 Antithetic subsampling

In Section 4 we showed that by setting the Lévy area to zero and using a suitable
antithetic treatment we obtained an MLMC variance with the same order as the Mil-
stein scheme for scalar SDEs. However, to obtain similarly good results for payoffs
which depend on the path minimum (or maximum) we are not able to completely
neglect the Lévy areas. Instead, for reasons which would require a lengthy expla-
nation and will be addressed in future work, we need to improve the rate of strong
convergence from 1/2 to 3/4 by approximating the Lévy areas by sub-sampling the
driving Brownian path. Let M f denote the number of subsamples required to ap-
proximate the Lévy area on the fine timestep. The subsampling timestep is given by
δ` = 2−`T/M f . Since we want to obtain

E
∥∥∥[L jk]

tn+1/2
tn − [A jk]

tn+1/2
tn

∥∥∥2
= O((2−`)3/2),

we need to take M f ≈ 2`/2 sub-samples in each fine timestep. By the same reason-
ing we take Mc ≈ 2(`−1)/2, with sub-sampling timestep δ`−1 = 2−(`−1)T/Mc. For
implementation we round the exponents, using M f = 2d`/2e and Mc = 2d(`−1)/2e.

 

 
W

W
f

W
c

W
a

Fig. 3 Brownian path w, its piecewise linear interpolations wc and w f , and the antithetic wa, for a
single coarse timestep. The circles denote the points at which the Brownian path is sampled.

Figure 3 illustrates a case in which wc has Mc =4 sub-sampling intervals within
each coarse timestep, and w f has M f = 8 sub-sampling intervals within each fine
timestep (this corresponds to level ` = 5). With sub-sampling, the piecewise lin-
ear antithetic fine path wa is defined by a time-reversal of the Brownian increments
within each of the coarse sub-sampling intervals. In the case illustrated, the first
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coarse sub-sampling interval contains 4 fine sub-sampling intervals, so these 4 in-
crements ∆w f ,1,∆w f ,2,∆w f ,3,∆w f ,4 are re-ordered as ∆w f ,4,∆w f ,3,∆w f ,2,∆w f ,1

to give the increments for wa.
First we represent the Lévy area approximation on the coarse time interval as a

sum of two approximations each with Mc/2 subsamples

[Lc
jk]

tn+1
tn = [Lc

jk]
tn+1/2
tn +[Lc

jk]
tn+1
tn+1/2

+
(

∆w`
1,n+1/2 ∆w`

2,n+1−∆w`
2,n+1/2 ∆w`

1,n+1

)
.

(13)
We can represent the Lévy area approximation for the first fine timestep within a
coarse timestep as

[L f
jk]

tn+1/2
tn = [Lc

jk]
tn+1/2
tn +

Mc/2−1

∑
s=0

[L f
jk]

tn+(s+1)δ`−1
tn+sδ`−1

, (14)

where [L f
jk]

tn+(s+1)δ`−1
tn+sδ`−1

are Lévy area approximatiosn with 2M f
Mc

subsamples. Notice

that Mc
2 δ`−1 = 2−`. In the same way, we represent the Lévy area approximation for

the antithetic path as

[La
jk]

tn+1/2
tn = [Lc

jk]
tn+1/2
tn +

Mc/2−1

∑
s=0

[La
jk]

tn+(s+1)δ`−1
tn+sδ`−1

. (15)

Due to Proposition 3, [La
jk]

tn+(s+1)δ`−1
tn+sδ`−1

=−[L f
jk]

tn+(s+1)δ`−1
tn+sδ`−1

. Hence(
[L f

jk]
tn+1/2
tn − [Lc

jk]
tn+1/2
tn

)
=−

(
[La

jk]
tn+1/2
tn − [Lc

jk]
tn+1/2
tn

)
,

which is the key antithetic property required for higher order MLMC variance
convergence. We derive the analogous approximation for the second fine timestep
within a coarse timestep. Returning to the Clark-Cameron example, where we fo-
cus only on the equation for x2, with Lévy area approximation using Mc and M f
subsamples respectively, we obtain

Xc
2,n+1 = Xc

2,n +Xc
1,n∆w`−1

2,n + 1
2 ∆w`−1

1,n ∆w`−1
2,n + 1

2 [L
c
jk]

tn+1
tn (16)

X f
2,n+1 = X f

2,n +X f
1,n ∆w`−1

2,n + 1
2 ∆w`−1

1,n ∆w`−1
2,n + 1

2 [L
f
jk]

tn+1/2
tn + 1

2 [L
f
jk]

tn+1
tn+1/2

+ 1
2

(
∆w`

1,n ∆w`
2,n+1/2−∆w`

2,n ∆w`
1,n+1/2

)
, (17)

Xa
2,n+1 = Xa

2,n +Xa
1,n ∆w`−1

2,n + 1
2 ∆w`−1

1,n ∆w`−1
2,n + 1

2 [L
a
jk]

tn+1/2
tn + 1

2 [L
a
jk]

tn+1
tn+1/2

+ 1
2

(
∆w`

1,n ∆w`
2,n+1/2−∆w`

2,n ∆w`
1,n+1/2

)
, (18)

where we use Lévy areas approximations (13) and (14). We present a lemma that
can be proved in a similar way to Lemma 3.1 in [5]:
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Lemma 4. If X f
n , Xa

n and Xc
n are as defined above, and N = 2`−1, then

X f
1,n = Xa

1,n = Xc
1,n,

1
2

(
X f

2,n +Xa
2,n

)
= Xc

2,n, n = 1,2, . . . ,N

and
sup

0≤n≤N
E
[∣∣∣X f

2,n−Xa
2,n

∣∣∣p]= O(∆ t
3
4 p)

Our numerical experiments show that for lookback and barrier options the
MLMC variance

V
[ 1

2

(
P(X f )+P(Xa)

)
−P(Xc)

]
has an O(∆ t3/2) upper bound. Since we use subsampling to approximate the Lévy
areas, the computational cost corresponds to γ = 3/2 in Theorem 1, and as a con-
sequence the complexity of the MLMC estimator is O(ε−2(logε)2), whereas the
standard Monte Carlo simulation complexity is O(ε−3).

6 Lookback and barrier options

6.1 Lookback options

Lookback options are based on the minimum (or maximum) of the simulated path.
As a specific example, we consider the payoff P = x2(T )−min0<t<T x2(t), based
on the second component x2 of the Clark and Cameron model problem.

To improve the convergence we use X̃ `(t) defined in (7). We have

min
0≤t<T

X̃ `
2(t) = min

0≤n<2`−1
X `

2,n,min,

where the minimum of the fine approximation over the fine timestep [t`−1
n , t`−1

n+1/2] is
given by [6]

X `
2,n,min =

1
2

(
X `

2,n +X `
2,n+1/2−

√(
X `

2,n+1/2−X `
2,n

)2
−2g2(X `

n)
2 ∆ t` logUn

)
,

(19)
where Un is a uniform random variable on the unit interval. The minima for the
antithetic path are defined similarly, using the same uniform random numbers Un.

For the coarse path, we do something slightly different. Using the same Brownian
interpolation, we use equation (7) to define X̃ `−1

n+1/2 ≡ X̃ `−1((n+ 1
2 )∆ t`−1). Given this

interpolated value, the minimum value over the coarse interval can then be taken to
be the smaller of the minima for the two fine intervals
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X `−1
2,n,min=

1
2

(
X `−1

2,n + X̃ `−1
2,n+1/2−

√(
X̃ `−1

2,n+1/2−X `−1
2,n

)2
−2g2(X `−1

n )2 ∆ t` logUn

)
,

X `−1
2,n+1/2,min=

1
2

(
X̃ `−1

2,n+1/2+X `−1
2,n+1−

√(
X `−1

2,n+1−X̃ `−1
2,n+1/2

)2
−2g2(X `−1

n )2 ∆ t` logUn+1/2

)
(20)

Note that we use g2(X `−1
n ) for both fine timesteps, because we have used the Brow-

nian Bridge with diffusion term g2(X `−1
n ) to derive both minima. If we changed

g2(X `−1
n ) to g2(X̃ `−1

n+1/2) in X `−1
2,n+1/2,min, this would mean that we used different

Brownian Bridge on the first and second half of the coarse timestep and as a con-
sequence we would violate (3). Note also the re-use of the same uniform random
numbers Un and Un+1/2 used to compute the fine path minima. To perform nu-
merical experiments we closely follow the algorithm prescribed in [4]. The re-
sults in Figure 4 are for the Clark and Cameron model problem with this look-
back payoff. The top left left plot shows the behaviour of the variance of both P̀
and P̀ − P̀ −1. The superimposed reference slope with rate 1.5 indicates that the
variance V` = V[P̀ − P̀ −1] = O(∆ t1.5

` ), corresponding to O(ε−2(logε)2) computa-
tional complexity for the antithetic MLMC estimator. The top right plot shows that
E[P̀ − P̀ −1] = O(∆ t`). The bottom left plot shows computational complexity C (as
defined in Theorem 1) with desired accuracy ε . The plot is of ε2 C versus ε , be-
cause we expect to see that ε2 C is only weakly dependent on ε for MLMC. For
standard Monte Carlo without subsampling of the Lévy areas, theory predicts that
ε2 C should be proportional to the number of timesteps on the finest level, which in
turn is roughly proportional to ε−1 due to the weak convergence order. For accu-
racy ε = 10−4, the antithetic MLMC is over 100 times more efficient than standard
Monte Carlo. The bottom right plot shows that V[X `

2 −X `−1
2 ] = O(∆ t3/2

` ). This cor-
responds to the standard strong convergence of order 3/4.

6.2 Barrier options

The barrier option which is considered is a down-and-out option for which the pay-
off is a Lipschitz function of the value of the underlying at maturity, provided the
underlying has never dropped below a value B, i.e. P = f (x2(T )) 1{τ>T}, where
the crossing time τ is defined as τ = inf{t : x2(t)< B} . Using the Brownian Bridge

interpolation, we can approximate 1{τ>T} by ∏
2`−1−1/2
n=0 1{X`

2,n,min≥B}, where X `
2,n,min

is defined in equation (19). This suggests following the lookback approximation in
computing the minimum of both the fine and coarse paths. However, the variance
would be larger in this case because the payoff is a discontinuous function of the
minimum. A better treatment, which is the one used in [3], is to use the conditional
Monte Carlo approach to further smooth the payoff. Since the process X `

n is Marko-
vian, we have
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E

[
f (X `

2,N)
N−1/2

∏
n=0

1{X`
n,min≥B}

]
= E

[
f (X `

2,N) E

[
N−1/2

∏
n=0

1{X`
2,n,min≥B} | X

`
0 , . . . ,X

`
N

]]

= E

[
f (X `

2,N)
N−1/2

∏
n=0

E
[
1{X`

2,n,min≥B} | X
`
n ,X

`
n+1/2

]]

= E

[
f (X `

2,N)
N−1/2

∏
n=0

(1− p`n)

]
,

where

p`n = P
(

inf
tn<t<tn+1/2

X̃ `
2(t)< B | X `

n ,X
`
n+1/2

)
= exp

(
−2(X `

2,n−B)+(X `
2,n+1/2−B)+

g2(X `
n)

2 ∆ t`

)

The antithetic path is treated similarly. For the payoff for the coarse path we sub-
sample X̃ `−1

n+1/2, as we did for the lookback option, to obtain
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Fig. 4 Clark / Cameron model with payoff x2(1)−minx2(t).
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E

[
f (X `−1

2,N )
N−1/2

∏
n=0

1{X`−1
2,n,min≥B}

]
= E

[
f (X `−1

2,N )
N−1/2

∏
n=0

(1− p`−1
n )

]
,

where, for integer n,

p`−1
n = exp

(
−2(X `−1

2,n −B)+(X̃ `−1
n2,+1/2−B)+

g2(X `−1
n )2 ∆ t`

)
,

p`−1
n+1/2 = exp

(
−2(X̃ `−1

2,n+1/2−B)+(X `−1
2,n+1−B)+

g2(X `−1
n )2 ∆ t`

)
.

Note that the same g2(X `−1
n ) is used to calculate both probabilities for the same

reason as for the lookback option.
The results in Figure 5 are for barrier option with barrier B = 0.1. The top left

left plot shows the behaviour of the variance of both P̀ and P̀ − P̀ −1. The super-
impose reference slope with rate 1.5 indicates that the variance V` =V[P̀ − P̀ −1] =
O(∆ t1.5

` ). This corresponds to an O(ε2(logε)2) computational complexity for the
antithetic MLMC, due to the additional cost of the sub-sampling to approximate the
Lévy areas. The top right plot shows that E[P̀ −P̀ −1] =O(∆ t`). The bottom left plot
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Fig. 5 Clark / Cameron model with payoff min(x2(1)−1,0) 1minx2(t)>0.1.
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shows the variation of the computational complexity C with desired accuracy ε . For
standard Monte Carlo without subsampling of the Lévy areas, theory predicts that
ε2 C should be proportional to the number of timesteps on the finest level, which in
turn is roughly proportional to ε−1 due to the weak convergence order. For accuracy
ε = 10−4, antithetic MLMC is almost 10 times more efficient than standard Monte
Carlo. The bottom right plot shows that V[X `

2−X `−1
2 ] = O(∆ t3/2

` ). This corresponds
to standard strong convergence of order 3/4.

7 Conclusions

In this paper we extended results from [3] and [5] to lookback and barrier options for
multidimensional SDEs. By suitable modification of the antithetic MLMC estima-
tor, using sub-sampling of the driving Brownian path to approximate the Lévy areas,
we obtained O(ε−2 log(ε)2) complexity for barrier and lookback options. Similar
results have also been obtained for digital options which are a discontinuous func-
tion of the final state, but they have been omitted here due to lack of space.
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