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Abstract We show how the benefits of the pathwise sensitivity approachto comput-
ing Monte Carlo Greeks can be extended to discontinuous payoff functions through
a combination of the pathwise approach and the Likelihood Ratio Method. With a
variance reduction modification, this results in an estimator which for timesteph
has a variance which isO(h−1/2) for discontinuous payoffs andO(1) for continu-
ous payoffs. Numerical results confirm the variance is much lower than theO(h−1)
variance of the Likelihood Ratio Method, and the approach isalso compatible with
the use of adjoints to obtain multiple first order sensitivities at a fixed cost.

1 Introduction

Monte Carlo simulation is the most popular approach in computational finance for
determining the prices of financial options. This is partly due to its computational
efficiency for high-dimensional problems involving multiple assets, interest rates or
exchange rates, and partly due to its relative simplicity and the ease with which it
can be parallelised across large compute clusters. However, the accurate calculation
of prices is only one objective of Monte Carlo simulation. Even more important
in some ways is the calculation of the sensitivities of the prices to various input
parameters. These sensitivities, known collectively as the “Greeks”, are important
for risk analysis and mitigation through hedging.

The pathwise sensitivity approach (also known as Infinitesimal Perturbation
Analysis) is one of the standard techniques for computing these sensitivities [14].
Giles and Glasserman have recently introduced a particularly efficient implementa-
tion of this approach using adjoint techniques [13] which are related to the use of
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reverse mode automatic differentiation [11, 15]. This makes it possible to calculate
an unlimited number of first order sensitivities at a total cost which is comparable
to the cost of the original pricing calculation.

However, the pathwise approach is not applicable when the financial payoff func-
tion is discontinuous, and even when the payoff is continuous and piecewise differ-
entiable, the use of scripting languages in real-world implementations means it can
be very difficult in practice to evaluate the derivative of very complex financial prod-
ucts. One solution to these problems is to use the LikelihoodRatio Method (LRM)
but its weaknesses are that the variance of the resulting estimator is usuallyO(h−1),
whereh is the timestep for the path discretisation, and it can not becombined effi-
ciently with the adjoint approach.

Building on the ideas of L’Ecuyer on hybrid pathwise/LRM sensitivity calcula-
tions [18, 19], this paper presents an idea which combines the pathwise approach for
the stochastic path evolution with LRM for the payoff evaluation. Through the use
of antithetic variates for variance reduction, the variance of the resulting estimator
is O(h−1/2) when the payoff is discontinuous, andO(1) when it is continuous. Nu-
merical examples show it is much more efficient than the standard LRM approach.

2 Pathwise and LRM sensitivities

Consider the approximate solution of the general SDE drivenby Brownian motion,

dSt = a(S, t)dt +b(S, t)dWt , (1)

using the Euler discretisation with timesteph,

Ŝn+1 = Ŝn +a(Ŝn, tn)h+b(Ŝn, tn)∆Wn+1. (2)

The Brownian increments∆Wn can be defined to be a linear transformation of a
vector of independent unit Normal random variablesZ.

The goal is to efficiently estimate the expected value of somefinancial payoff
function f (S), and numerous first order sensitivities of this value with respect to
different input parameters such as the volatility or one component of the initial data
S(0). In the simplest cases,f (S) is a function of the value of the underlying solution
S(T ) at the final timeT , but in more general cases it might depend on the values at
intermediate times as well.

The pathwise sensitivity approach can be viewed as startingwith the expectation
expressed as an integral with respect toZ:

V̂ ≡ E

[
f (Ŝ)

]
=

∫
f (Ŝ(Z,θ)) pZ(Z) dZ. (3)

Hereθ represents a generic input parameter, and the probability density function
for Z is
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pZ(Z) = (2π)−d/2exp
(
−‖Z‖2

2/2
)
,

whered is the dimension of the vectorZ.
If the drift, volatility and payoff functions are all differentiable, (3) may be dif-

ferentiated to give
∂V̂
∂θ

=
∫ ∂ f

∂ Ŝ

∂ Ŝ
∂θ

pZ(Z) dZ, (4)

with
∂ Ŝ
∂θ

being obtained by differentiating (2) to obtain

∂ Ŝn+1

∂θ
=

∂ Ŝn

∂θ
+

(
∂an

∂ Ŝn

∂ Ŝn

∂θ
+

∂an

∂θ

)
h+

(
∂bn

∂ Ŝn

∂ Ŝn

∂θ
+

∂bn

∂θ

)
∆Wn+1. (5)

By considering the limit of a sequence of regularised functions, it can be proved
that (4) remains valid when the payoff function is continuous and piecewise differ-
entiable, and the numerical estimate obtained by averagingoverM independent path
simulations

M−1
M

∑
m=1

∂ f

∂ Ŝ
(Ŝ(m))

∂ Ŝ(m)

∂θ

is an unbiased estimate for∂V̂/∂θ with a variance which isO(M−1), independent
of h, if f (S) is Lipschitz and the drift and volatility functions satisfythe standard
conditions [17].

Performing a change of variables, the expectation can also be expressed as

V̂ ≡ E

[
f (Ŝ)

]
=

∫
f (Ŝ) pS(Ŝ,θ) dŜ, (6)

wherepS(Ŝ,θ) is the probability density function for̂S which will depend on all of
the inputs parameters. If this is known, (6) can be differentiated to give

∂V̂
∂θ

=
∫

f
∂ pS

∂θ
dŜ =

∫
f

∂ (logpS)

∂θ
pS dŜ = E

[
f

∂ (logpS)

∂θ

]
.

which can be estimated using the unbiased estimator

M−1
M

∑
m=1

f (Ŝ(m))
∂ logpS(Ŝ(m))

∂θ

This is the Likelihood Ratio Method. Its great advantage is that it does not require
the differentiation off (Ŝ). This makes it applicable to cases in which the payoff
is discontinuous, and it also simplifies the practical implementation because banks
often have complicated flexible procedures through which traders specify payoffs.
However, it does have a number of limitations, one being a requirement of abso-
lute continuity which is not satisfied in a few important applications such as the
LIBOR market model [14]. Other drawbacks of LRM are that in most cases it gives
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an estimator with a variance which isO(M−1h−1), becoming infinite ash → 0 [14],
and there is no way to efficiently incorporate adjoint techniques and hence the com-
putational cost is proportional to the number of first order sensitivities which are
needed.

3 Vibrato Monte Carlo

We now introduce a hybrid combination of pathwise and LRM sensitivity calcula-
tion, applying the pathwise approach to the differentiablepath simulation, and using
LRM for the discontinuous payoff evaluation. The idea of combining pathwise and
LRM approaches is not new. L’Ecuyer [18, 19] presented a general framework in
which the two approaches are just special cases of a more general estimator, and
Chen and Glasserman [5] have recently shown that the use of Malliavin calculus
[8, 9] can also be viewed as a hybrid pathwise/LRM combination.

The novelty in the present paper lies in the precise form of the hybrid combina-
tion and the variance reduction which is achieved, making ita very practical method
for finance applications with a discontinuous payoff function.

3.1 Conditional expectation

The Oxford English Dictionary describes “vibrato” as “a rapid slight variation in
pitch in singing or playing some musical instruments”. The analogy to Monte Carlo
methods is the following: whereas a path simulation in a standard Monte Carlo cal-
culation produces a precise value for the output values fromthe underlying stochas-
tic process, in the vibrato Monte Carlo approach the output values have a narrow
probability distribution.

This is an example of the use of Conditional Monte Carlo simulation [1], and
generalises an example discussed by Glasserman in section 7.2.3 of his book [14]
as a solution to the problem of computing Greeks for discontinuous payoffs. In his
example, a path simulation for a scalar SDE is performed in the usual way for the
first N−1 timesteps, at each timestep taking a value for the Wiener increment∆Wn

which is a sample from the appropriate Gaussian distribution, and then using (2) to
update the solution. On the final timestep, one instead considers the full distribution
of possible values for∆WN . This gives a Gaussian distribution for̂SN at time T ,
conditional on the value of̂SN−1 at timeT−h, with probability density function

pS(ŜN) =
1√

2π σW
exp

(
− (ŜN −µW )2

2σ2
W

)
(7)

where
µW = ŜN−1 +a(ŜN−1,T−h)h, σW = b(ŜN−1,T−h)

√
h,
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with a(S, t) andb(S, t) being the drift and volatility of the SDE described in (1).
Hence, the conditional expectation for the value of a digital payoff with strikeK,

f (S(T )) = H(S(T )−K) ≡
{

1, S(T ) > K

0, S(T ) ≤ K

is

E

[
f (ŜN) | ŜN−1

]
=

∫ ∞

−∞
H(ŜN−K) pS(ŜN) dŜN = Φ

(
µW −K

σW

)

whereΦ(·) is the cumulative Normal distribution function. A Monte Carlo estimator
for the option value is therefore

M−1
M

∑
m=1

E[ f (ŜN) | Ŝ(m)
N−1] ≡ M−1

M

∑
m=1

Φ

(
µ(m)

W −K

σ (m)
W

)

and because the conditional expectationE[ f (ŜN) | ŜN−1] is a differentiable function
of the input parameters the pathwise sensitivity approach can now be applied.

There are two difficulties in using this form of conditional expectation in practice
in financial applications. This first is that the integral arising from the conditional ex-
pectation will often become a multi-dimensional integral without an obvious closed-
form value, and the second is that it requires a change to the often complex software
framework used to specify payoffs.

The solution is to use a Monte Carlo estimate of the conditional expectation, and
use LRM to obtain its sensitivity. Thus, the technique combines pathwise sensitivity
for the path calculation with LRM sensitivity for the payoffevaluation.

3.2 Vibrato Monte Carlo

The idea is very simple; adopting the conditional expectation approach, each path
simulation for a particular set of Wiener incrementsW ≡ (∆W1,∆W2, . . . ,∆WN−1)
(excluding the increment for the final timestep) computes a conditional Gaussian
probability distributionpS(ŜN |W ). For a scalar SDE, ifµW andσW are the mean
and standard deviation for givenW , then

ŜN(W,Z) = µW +σW Z,

whereZ is a unit Normal random variable. The expected payoff can then be ex-
pressed as

V̂ = EW

[
EZ [ f (ŜN) |W ]

]
=

∫ {∫
f (ŜN) pS(ŜN |W ) dŜN

}
pW (W ) dW.
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The outer expectation/integral is an average over the discrete Wiener increments,
while the inner conditional expectation/integral is averaging overZ.

To compute the sensitivity to the input parameterθ , the first step is to apply the
pathwise sensitivity approach for fixedW to obtain∂ µW /∂θ ,∂σW /∂θ . We then
apply LRM to the inner conditional expectation to get

∂V̂
∂θ

= EW

[
∂

∂θ
EZ

[
f (ŜN) |W

]]
= EW

[
EZ

[
f (ŜN)

∂ (logpS)

∂θ
| W

] ]
,

wherepS is defined in (7) and

∂ (logpS)

∂θ
=

∂ (logpS)

∂ µW

∂ µW

∂θ
+

∂ (logpS)

∂σW

∂σW

∂θ
.

The Monte Carlo estimators for̂V and∂V̂/∂θ have the form

M−1
M

∑
m=1

Ŷ (m), M−1
M

∑
m=1

Ŷ (m)
θ ,

whereŶ (m) is an unbiased estimator forEZ

[
f (ŜN) |W (m)

]
and Ŷ (m)

θ is an unbi-

ased estimator forEZ

[
f (ŜN) ∂ (logpS)

∂θ |W (m)
]

for a given set of Brownian increments

W (m).
Although the discussion so far has considered an option based on the value of

a single underlying value at the terminal timeT , it will be shown that the idea ex-
tends very naturally to multidimensional cases, producinga conditional multivariate
Gaussian distribution, and also to financial payoffs which are dependent on values
at intermediate times.

3.3 Efficient estimators

It is important that̂Y andŶθ have low variance to minimise the number of path sim-
ulations which must be performed to achieve a given accuracy. Rather than defining
Ŷ (m) to be simply

Ŷ (m) = f (µ(m)
W +σ (m)

W Z(m)),

using a single independentZ sample for each Brownian path, it is better use anti-
thetic variates to reduce the variance, noting that

EZ

[
f (ŜN) |W

]
= EZ

[
1
2

(
f (µW +σW Z)+ f (µW−σW Z)

)]
,

and also use multiple independentZ samples for each Brownian path by defining
Ŷ (m) to be
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Ŷ (m) = P−1
P

∑
p=1

1
2

(
f (µ(m)

W +σ (m)
W Z(m,p))+ f (µ(m)

W −σ (m)
W Z(m,p))

)
.

The optimal number of samples will be considered later, but the varianceVZ [Ŷ |W ]
will be particularly small if f (S) is locally differentiable, and in this case a singleZ
sample is probably sufficient.

For a scalar SDE and a givenW ,

logpS = − logσW − (ŜN −µW )2

2σ2
W

− 1
2 log(2π)

and

EZ

[
f (ŜN)

∂ (logpS)

∂θ
| W

]
=

∂ µW

∂θ
EZ

[
f (ŜN)

∂ (logpS)

∂ µW
| W

]

+
∂σW

∂θ
EZ

[
f (ŜN)

∂ (logpS)

∂σW
| W

]
.

Looking at the first of the two expectations on the r.h.s., then

EZ

[
f (ŜN)

∂ (logpS)

∂ µW
| W

]
= EZ

[
Z

σW
f (µW +σW Z)

]

= EZ

[
Z

2σW

(
f (µW +σW Z)− f (µW−σW Z)

)]
.

If f (S) is locally differentiable, this is the expectation of a quantity which isO(1) in
magnitude, and oneZ sample is probably sufficient to estimate its value. Iff (S) is
discontinuous, then for paths near the discontinuity the expectation is of a quantity
which isO(σ−1

W ) = O(h−1/2) and it will be more efficient to use multiple samples
to estimate the expected value.

Similarly, using the additional result thatEZ [Z2−1] = 0,

EZ

[
f (ŜN)

∂ (logpS)

∂σW
| W

]

= EZ

[
Z2−1

σW
f (µW +σW Z)

]

= EZ

[
Z2−1
2σW

(
f (µW +σW Z)−2 f (µW )+ f (µW−σW Z)

)]
.

The expression within this expectation is in general no larger than for the previous
expectation, and so the same set of samples will suffice.

Combining these two derivations, we finally defineŶθ to be

Ŷ (m)
θ =

∂ µW

∂θ
Ŷ (m)

µ +
∂σW

∂θ
Ŷ (m)

σ
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whereŶ (m)
µ andŶ (m)

σ are the following averages based onP independentZ samples,

Ŷ (m)
µ = P−1

P

∑
p=1

Z(m,p)

2σW

(
f (µ(m)

W +σ (m)
W Z(m,p))− f (µ(m)

W −σ (m)
W Z(m,p))

)
(8)

Ŷ (m)
σ = P−1

P

∑
p=1

(Z(m,p))2−1

2σ (m)
W

(
f (µ(m)

W +σ (m)
W Z(m,p))−2 f (µ(m)

W )+ f (µ(m)
W −σ (m)

W Z(m,p))
)

3.4 Multivariate generalisation

These estimators can be generalised to the case of multiple assets with a multivariate
Gaussian distribution conditional on the set of Wiener increments which lead to
approximationŜN−1 at timeT− h. If µW is now the column vector of conditional
expectationsE[ŜN |W ], andΣW is the covariance matrix, then̂SN can be written as

ŜN(W,Z) = µW +CW Z,

whereZ is a vector of uncorrelated unit Normal variables andCW is any matrix
such thatΣW = CW CT

W , with CT
W denoting the matrix transpose. ProvidedΣW is

non-singular, the joint probability density function forS is

logpS = −1
2 log|ΣW |− 1

2(ŜN −µW )T Σ−1
W (ŜN −µW )− 1

2d log(2π),

whered is the dimension ofZ. Differentiating this (see [7, 20]) gives

∂ logpS

∂ µW
= Σ−1

W (ŜN −µW ) = C−T
W Z,

whereC−T
W is shorthand for(C−1

W )T , and

∂ logpS

∂ΣW
= −1

2Σ−1
W + 1

2Σ−1
W (ŜN −µW )(ŜN −µW )T Σ−1

W = 1
2 C−T

W

(
Z ZT −I

)
C−1

W .

For a givenW ,

EZ

[
f (ŜN)

∂ (logpS)

∂θ
| W

]
=

(
∂ µW

∂θ

)T

EZ

[
f (ŜN)

∂ (logpS)

∂ µW
| W

]

+ Trace

(
∂ΣW

∂θ
EZ

[
f (ŜN)

∂ (logpS)

∂ΣW
| W

])
,

where the trace of a matrix is the sum of its diagonal elements. To obtain efficient
estimators, we again use antithetic variates to get
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EZ

[
f (ŜN)

∂ (logpS)

∂ µW
| W

]
= EZ

[
1
2

(
f (µW +CW Z)− f (µW−CW Z)

)
C−T

W Z
]
,

and we useEZ [Z ZT −I ] = 0 to give

EZ

[
f (ŜN)

∂ (logpS)

∂ΣW
| W

]

= EZ

[
1
4

(
f (µW +CW Z)−2 f (µW )+ f (µW−CW Z)

)
C−T

W (Z ZT −I)C−1
W

]
.

These two results lead to the estimator

Ŷ (m)
θ =

(
∂ µW

∂θ

)T

Ŷ (m)
µ +Trace

(
∂ΣW

∂θ
Ŷ (m)

Σ

)

whereŶ (m)
µ andŶ (m)

Σ are defined as

Ŷ (m)
µ = P−1

P

∑
p=1

(
f (µ(m)

W +C(m)
W Z(m,p))− f (µ(m)

W −C(m)
W Z(m,p)) (C(m)

W )−T Z(m,p)
)

(9)

Ŷ (m)
Σ = P−1

P

∑
p=1

1
4

(
f (µ(m)

W +σ (m)
W Z(m,p))−2 f (µ(m)

W )+ f (µ(m)
W −σ (m)

W Z(m,p))
)

× (C(m)
W )−T

(
Z(m,p) (Z(m,p))T−I

)
(C(m)

W )−1.

If the payoff also depends on values at intermediate timesτ j, not just at maturity,
these can be handled by omitting the simulation timetn closest to each measurement
time τ j, using a timestep twice as big as usual for the time interval[tn−1, tn+1].
Using Brownian interpolation conditional on the valuesŜn±1, with constant drift
and volatility based on̂Sn−1, results in a Gaussian distribution forŜ(τ j) of the form

Ŝ(τ j) = Ŝn−1 +
τ j − tn−1

2h

(
Ŝn+1− Ŝn−1

)
+

√
(tn+1−τ j)(τ j−tn−1)

2h
Cn−1 Z

whereCn−1CT
n−1 is the covariance matrix for̂Sn+1 conditional onŜn−1, andZ is

again a vector of uncorrelated unit Normal variables. Collectively, the valueŝS(τ j)
form a set with a multivariate Normal distribution, conditional on the set of dis-
crete Wiener increments, with the values at different timesbeing independently dis-
tributed. One can then apply the theory above to obtain the sensitivities.

The Likelihood Ratio Method is not applicable when the covariance matrixΣ
is singular. This situation occurs, for example, in the LIBOR market model driven
by a single Brownian motion [3]. A solution is to introduce anadditional diffusion
in the final timestep, for example by replacingΣ by Σ +σ I, whereI is the identity
matrix. If the extra diffusion is of a similar magnitude (e.g. σ is approximately
equal to the largest eigenvalue ofΣ ) this will introduce anO(h) bias in the expected
payoff and its sensitivity, but this bias is of the same orderof magnitude as the weak
convergence error associated with the Euler approximation.
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3.5 Optimal number of samples

The use of multiple samples to estimate the value of the conditional expectations
is an example of the splitting technique [1]. IfW andZ are independent random
variables, then for any functiong(W,Z) the estimator

ŶM,P = M−1
M

∑
m=1

(
P−1

P

∑
p=1

g(W (m),Z(m,p))

)

with independent samplesW (m) andZ(m,p) is an unbiased estimator for

EW,Z [g(W,Z)] ≡ EW

[
EZ [g(W,Z) |W ]

]
,

and its variance is

V[ŶM,P] = M−1
VW

[
EZ [g(W,Z) |W ]

]
+(MP)−1

EW

[
VZ [g(W,Z) |W ]

]
.

Applying this general result to our vibrato estimators withP samples forZ for each
simulation path, the variance is of the form

v1 M−1 + v2 (MP)−1,

and the cost of computinĝYM,P is proportional to

c1 M + c2 MP,

with c1 corresponding to the path calculation andc2 corresponding to the payoff
evaluation. For a fixed computational cost, the variance canbe minimised by min-
imising the product

(
v1+v2 P−1)(c1+c2 P) = v1 c2 P+ v1 c1 + v2 c2 + v2 c1 P−1,

which gives the optimum valuePopt =
√

v2 c1/v1 c2.
c1 is O(h−1) since the cost is proportional to the number of timesteps, and c2 is

O(1), independent ofh. If the payoff is Lipschitz, then̂Yθ is O(1) for all paths, and
sov1 andv2 are bothO(1) andPopt=O(h−1/2). On the other hand, if the payoff is
discontinuous with anO(h1/2) fraction of paths being withinO(h1/2) of the discon-
tinuity (which assumes a locally bounded density for the distribution of S(T )) then
for these pathsEZ [Ŷθ |W ]=O(h−1/2) andVZ [Ŷθ |W ]=O(h−1). This leads tov1 and
v2 both beingO(h−1/2) and so againPopt=O(h−1/2).

In both cases, ash → 0, the variance is asymptotically equal tov1 M−1 and the
cost is asymptotically equal toc1 M. Thus the use of the vibrato technique does not,
to leading order, increase the variance or the computational cost compared to the use
of exact conditional expectation in the few cases for which this exists in a simple
closed form.
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Fig. 1 Comparison of Vega variance for LRM, pathwise and vibrato estimators.

3.6 Numerical results

We consider a 2-dimensional Geometric Brownian Motion,

dS(1)
t = r S(1)

t dt +σ (1) S(1)
t dW (1)

t

dS(2)
t = r S(2)

t dt +σ (2) S(2)
t dW (2)

t

with parametersr=0.05, σ (1)=0.2, σ (2)=0.3 and correlationρ =0.5 between the
driving Brownian motions. The payoff function is chosen to be a digital call paying
a discounted value of exp(−rT ) if and only if the value ofS(1)(T ) exceeds the strike
K. Parameter valuesT =1,K =100 are used. This very simple example is chosen so
that in Fig. 1 we can compare the variance for the vibrato calculation to the variance
of both the LRM method and also the pathwise method in combination with the
analytic conditional expectation.

The figure shows the increase in the variance of the estimatorfor one of the
Vegas,∂V/∂σ (1), as the timesteph is reduced. We see the rapid increase in the
variance of the LRM method which isO(h−1) asymptotically, and the much slower
O(h−1/2) growth in the variance of the two sets of results based on the pathwise
approach. The difference between the pathwise and vibrato results is due to the
number ofZ samples used in the vibrato method. Only one sample was used for
the results presented here; increasing this number will lead to the vibrato variance
converging to the variance of the pathwise method using the analytic conditional
expectation. It is striking how much larger the LRM varianceis. With 2 timesteps it
is already 10 times larger than the vibrato method with a single Z sample, while for
128 timesteps it is 200 times larger.
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4 Adjoint pathwise sensitivity implementation

There is insufficient space in this paper to fully explain theadjoint implementation,
but it is important to note that the vibrato approach is completely compatible with
an adjoint calculation of the path sensitivity, and thus it is possible to obtain an
unlimited number of first order sensitivities at a cost whichis similar to the cost of
the original calculation.

To give an introduction to the ideas, we follow the terminology used by the Auto-
matic Differentiation community [2, 4, 6, 15]. Forward modesensitivity calculation
(like the standard pathwise sensitivity calculation) starts with a perturbation to an
input and derives the corresponding perturbation to all subsequent variables. Doing
this within a computer program at the level of individual binary operation (e.g. ad-
dition or multiplication) of the form

c = g(a,b)

leads to the corresponding linear perturbation equation

ċ =
∂c
∂a

ȧ+
∂c
∂b

ḃ

where ˙c denotes the derivative ofc with respect to the perturbed input parameter.
By contrast, the reverse (or adjoint) mode starts with the fact that the final out-

put of interest has unit sensitivity with respect to itself,and then works backward
through the sequence of computer instructions, to determine the sensitivity of the
final output to changes in the input parameters of each instruction. Assuming thata
andb are only used for the computation ofc in the above example (i.e. they are not
used as inputs for any other calculation) the correspondingtwo adjoint equations
are

a =
∂c
∂a

c, b =
∂c
∂b

c

wherea represents the sensitivity of the final output to changes ina.
The key point of the adjoint approach is that by working backwards from the

payoff calculation through the path evolution back to the start, it can compute the
sensitivity of a single output quantity (such as a payoff function) to an unlimited
number of input parameters (such as initial price, interestrate, volatility, etc.) at
a total cost which is little more than the original calculation. For details on this
approach and its use in computational finance, see [11, 13, 16].

In applying these adjoint ideas to the vibrato approach in this paper, for each
path in the scalar case one would simulate the path up toŜN−1 and compute the
quantitiesŶµ andŶσ as defined in (8). These values correspond toµW andσW , the
sensitivity of the estimated payoff for that path to changesin µW andσW . This is
the initialisation required for the reverse pass of the adjoint path calculation which
will lead to the calculation ofθ , the sensitivity of the estimated payoff for that path
to changes in an input parameterθ . Similarly, in the multivariate case the adjoint
initialisation isµW =Ŷµ andΣW =ŶΣ , whereŶµ andŶΣ are as defined in (10).
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5 Conclusions and future work

In this paper we have introduced the idea of vibrato Monte Carlo sensitivity cal-
culations. This can be viewed as an application of the Conditional Monte Carlo
approach, and is a generalisation of the use of conditional expectation for payoff
smoothing. It leads to a hybrid method for calculating sensitivities, applying path-
wise sensitivity analysis to the path simulation, and the Likelihood Ratio Method
to the payoff evaluation. This offers the computational efficiency of the pathwise
method, particularly when combined with an adjoint implementation, together with
the greater generality and ease-of-implementation of LRM.

Although the paper discusses only first order sensitivities, the approach extends
naturally to higher order derivatives. A similar variance reduction construction for
second order derivatives leads to an estimator with a variance which isO(h−1/2) for
payoffs which are continuous but have a discontinuous derivative, andO(h−3/2) for
payoffs which are discontinuous.

Another direction for future research is the use of the vibrato idea for multilevel
Monte Carlo analysis [12]. Analytic conditional expectation is currently used to
treat discontinuous payoffs to obtain improved convergence rates with the Milstein
scheme [10]. The vibrato approach will allow this to be generalised to multivariate
cases.
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