Vibrato Monte Carlo sensitivities

M.B. Giles

Abstract We show how the benefits of the pathwise sensitivity appré@cbhmput-
ing Monte Carlo Greeks can be extended to discontinuousfipaywetions through
a combination of the pathwise approach and the LikelihootibRdethod. With a
variance reduction modification, this results in an estimathich for timesteph
has a variance which i©(h~1/2) for discontinuous payoffs an@(1) for continu-
ous payoffs. Numerical results confirm the variance is moefet than thed(h—1)
variance of the Likelihood Ratio Method, and the approadise compatible with
the use of adjoints to obtain multiple first order sensitxgtat a fixed cost.

1 Introduction

Monte Carlo simulation is the most popular approach in caatimnal finance for
determining the prices of financial options. This is parthedo its computational
efficiency for high-dimensional problems involving mulg@ssets, interest rates or
exchange rates, and partly due to its relative simplicity #re ease with which it
can be parallelised across large compute clusters. Hopteeegiccurate calculation
of prices is only one objective of Monte Carlo simulation.eBvmore important
in some ways is the calculation of the sensitivities of thiegw to various input
parameters. These sensitivities, known collectively as‘@reeks”, are important
for risk analysis and mitigation through hedging.

The pathwise sensitivity approach (also known as Infinit@siPerturbation
Analysis) is one of the standard techniques for computiegehsensitivities [14].
Giles and Glasserman have recently introduced a partlgidéficient implementa-
tion of this approach using adjoint techniques [13] which =alated to the use of
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reverse mode automatic differentiation [11, 15]. This nsak@ossible to calculate
an unlimited number of first order sensitivities at a totadtowhich is comparable
to the cost of the original pricing calculation.

However, the pathwise approach is not applicable when thadial payoff func-
tion is discontinuous, and even when the payoff is contiswmd piecewise differ-
entiable, the use of scripting languages in real-world enm@ntations means it can
be very difficult in practice to evaluate the derivative ofyveomplex financial prod-
ucts. One solution to these problems is to use the Likelitiatib Method (LRM)
but its weaknesses are that the variance of the resultingagst is usuallyo(h™1),
whereh is the timestep for the path discretisation, and it can natdmbined effi-
ciently with the adjoint approach.

Building on the ideas of L'Ecuyer on hybrid pathwise/LRM siivity calcula-
tions [18, 19], this paper presents an idea which combireepathwise approach for
the stochastic path evolution with LRM for the payoff evdioa. Through the use
of antithetic variates for variance reduction, the varen€the resulting estimator
is O(h~%/2) when the payoff is discontinuous, a@d1) when it is continuous. Nu-
merical examples show it is much more efficient than the stahdRM approach.

2 Pathwise and LRM sensitivities

Consider the approximate solution of the general SDE diyeBrownian motion,
dS =a(St)dt+b(St) dW, 1)

using the Euler discretisation with timestiep
Sii1=S+aS,th) h+b(S, th) AW, 1. @)

The Brownian incrementAW, can be defined to be a linear transformation of a
vector of independent unit Normal random variaties

The goal is to efficiently estimate the expected value of stimencial payoff
function f(S), and numerous first order sensitivities of this value witkpezt to
different input parameters such as the volatility or one gonent of the initial data
S(0). In the simplest case$(S) is a function of the value of the underlying solution
S(T) at the final timeT, but in more general cases it might depend on the values at
intermediate times as well.

The pathwise sensitivity approach can be viewed as stasfitiigthe expectation
expressed as an integral with respecZ to

V=E[t3] :/f(§(z,e)) 02(Z) dz. 3)

Here 6 represents a generic input parameter, and the probabditgity function
forZis
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pz(2) = (2m)~V?exp(—(12|3/2),

whered is the dimension of the vectar.
If the drift, volatility and payoff functions are all diffentiable, (3) may be dif-
ferentiated to give
oV af as

90 077§ 20 pz(Z) dzZ, 4)

with g—g being obtained by differentiating (2) to obtain

0Sw1  0S, [ 9a, 0,  dan dbn 08, dbn
20 09+<as{109+06> <(931ae > Vot ()
By considering the limit of a sequence of regularised fundj it can be proved
that (4) remains valid when the payoff function is continsi@nd piecewise differ-
entiable, and the numerical estimate obtained by averawiedVl independent path
simulations 3
f
M~ z 4 == (8m) osm
&1 0S 26
is an unbiased estimate fa¥ /36 with a variance which i©(M~1), independent
of h, if f(S) is Lipschitz and the drift and volatility functions satistiye standard
conditions [17].
Performing a change of variables, the expectation can &sxpressed as

V=E[1(9] = [1(5 p(S6) S (6)

whereps(§ 6) is the probability density function fd8which will depend on all of
the inputs parameters. If this is known, (6) can be diffaetet to give

/fapsds /f 'ngs d§]E[fa(|Z%pS)].

which can be estimated using the unbiased estimator

m, 9logps(S™)

M~ Z f(SM) 5

This is the Likelihood Ratio Method. Its great advantagen&t it does not require
the differentiation off (S). This makes it applicable to cases in which the payoff
is discontinuous, and it also simplifies the practical impdatation because banks
often have complicated flexible procedures through whiabldrs specify payoffs.
However, it does have a number of limitations, one being airement of abso-
lute continuity which is not satisfied in a few important @pations such as the
LIBOR market model [14]. Other drawbacks of LRM are that ingtheases it gives
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an estimator with a variance which@M~th~1), becoming infinite ab — 0 [14],
and there is no way to efficiently incorporate adjoint tegleis and hence the com-
putational cost is proportional to the number of first ordemsitivities which are
needed.

3 Vibrato Monte Carlo

We now introduce a hybrid combination of pathwise and LRMsé##rity calcula-
tion, applying the pathwise approach to the differentigialh simulation, and using
LRM for the discontinuous payoff evaluation. The idea of &dmng pathwise and
LRM approaches is not new. L'Ecuyer [18, 19] presented a igerfimmework in
which the two approaches are just special cases of a moreajastimator, and
Chen and Glasserman [5] have recently shown that the use liiila calculus
[8, 9] can also be viewed as a hybrid pathwise/LRM combimatio

The novelty in the present paper lies in the precise form ehybrid combina-
tion and the variance reduction which is achieved, makiag/éry practical method
for finance applications with a discontinuous payoff fuowti

3.1 Conditional expectation

The Oxford English Dictionary describes “vibrato” as “a idglight variation in
pitch in singing or playing some musical instruments”. Thalagy to Monte Carlo
methods is the following: whereas a path simulation in addeth Monte Carlo cal-
culation produces a precise value for the output values fhenunderlying stochas-
tic process, in the vibrato Monte Carlo approach the outplies have a narrow
probability distribution.

This is an example of the use of Conditional Monte Carlo satiah [1], and
generalises an example discussed by Glasserman in se@i8not his book [14]
as a solution to the problem of computing Greeks for disonitiis payoffs. In his
example, a path simulation for a scalar SDE is performedeénuual way for the
first N—1 timesteps, at each timestep taking a value for the WiemeemnentAW,
which is a sample from the appropriate Gaussian distribuiad then using (2) to
update the solution. On the final timestep, one instead derssthe full distribution
of possible values foAWy. This gives a Gaussian distribution 8 at time T,
conditional on the value dy_1 at timeT — h, with probability density function

a1 (S pw)?
ps(SN)—\/ﬁO_W eXp< 200, ) @)

where R R R
S\|,l+a(s\],17T*h) ha Ow = b(S\Iflnyh) \/Ha

Hw
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with a(S't) andb(St) being the drift and volatility of the SDE described in (1).
Hence, the conditional expectation for the value of a digigaoff with strikeK,

1, 9T)>K

(M) = H(S(T)—K)z{o T <K

B[18018v1] = [ HE-K) psG o = oK)

where®(+) is the cumulative Normal distribution function. A Monte @aestimator
for the option value is therefore

M M <m)7K
MLS Ef(S)EM ] =ML q:(“"")
pRCHIEN 2.0\ "om

and because the conditional expectafidii(Sy) | Sv_1] is a differentiable function
of the input parameters the pathwise sensitivity approacmow be applied.

There are two difficulties in using this form of conditionapectation in practice
in financial applications. This first is that the integrakarg from the conditional ex-
pectation will often become a multi-dimensional integrégheut an obvious closed-
form value, and the second is that it requires a change tdftbie complex software
framework used to specify payoffs.

The solution is to use a Monte Carlo estimate of the conditierpectation, and
use LRM to obtain its sensitivity. Thus, the technique cambipathwise sensitivity
for the path calculation with LRM sensitivity for the payeffaluation.

3.2 Vibrato Monte Carlo

The idea is very simple; adopting the conditional expeatatipproach, each path
simulation for a particular set of Wiener incremelis= (AW, AW, ..., AWN_1)
(excluding the increment for the final timestep) computesrdtional Gaussian
probability distributionps(Sy|W). For a scalar SDE, ifyy and gy are the mean
and standard deviation for givéM, then

~

S(W,Z) = pw + owZ,

whereZ is a unit Normal random variable. The expected payoff can the ex-
pressed as

V= B B2t G0 W] = [ { [ 180 peSulw) 61} putw) o
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The outer expectation/integral is an average over the etisaiiener increments,
while the inner conditional expectation/integral is aggng overZ.

To compute the sensitivity to the input parameiethe first step is to apply the
pathwise sensitivity approach for fixétl to obtainduw/06,00w/06. We then
apply LRM to the inner conditional expectation to get

% o 2 [1S01w]] = ez 1150 20528 ] |

whereps is defined in (7) and

d(logps) _ d(logps) dpw  I(logps) 96w

oo Juw 06 doy 06

The Monte Carlo estimators fat anddV /6 have the form

<

M
M-S ym Mflz?(m)
) e >

m=1 m=1

whereY(™ is an unbiased estimator fdz [f(éN) \W<m)} and¥\™ is an unbi-

ased estimator fdE; [f(§\‘) % |W(m>} for a given set of Brownian increments

w(m,

Although the discussion so far has considered an optiondbaisgéhe value of
a single underlying value at the terminal timeit will be shown that the idea ex-
tends very naturally to multidimensional cases, produeingnditional multivariate
Gaussian distribution, and also to financial payoffs whighdgependent on values
at intermediate times.

3.3 Efficient estimators

It is important thalY andYg have low variance to minimise the number of path sim-
ulations which must be performed to achieve a given accuRather than defining
Y™ to be simply

VO = () P 2™,

using a single independertsample for each Brownian path, it is better use anti-
thetic variates to reduce the variance, noting that

Ez [f(ﬁu) \W} =Ez [%(f(uw+0'w2)+ f(uw—va))] ,

and also use multiple independehsamples for each Brownian path by defining
Y™ to be
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P
ym_ply %(f(usvm>+ov<vm>z(mvp>)+ f(u\ﬁ\,@—a\ﬁvm)Z(mvp))) .
p=1

The optimal number of samples will be considered later, hetvariancéVz[Y | W]
will be particularly small iff (S) is locally differentiable, and in this case a single
sample is probably sufficient.
For a scalar SDE and a givey,
§N _ 2
logps = —logow — %
W

o — $log(2m)

and

£z |10 20552 w| - T, 18 209P) ]

20 20 a1
Jow a , 9(logps)
+ 2 g, [f(sm 20090 w|.

Looking at the first of the two expectations on the r.h.snthe
& ,9(logps) } {Z ]
W|=Ez|— f +owZ
e 1807 GP) |w] =2 | 2 (w2
=Ez i(f(/,l\,\H-q,\,Z)—f(/,t\,\,—o\,\,z)) .
20w

If f(S) is locally differentiable, this is the expectation of a gtigrwhich isO(1) in
magnitude, and ong sample is probably sufficient to estimate its valuef () is
discontinuous, then for paths near the discontinuity theeetation is of a quantity
which isO(ay,') = O(h~1/2) and it will be more efficient to use multiple samples
to estimate the expected value.

Similarly, using the additional result thay[Z2—1] = 0,

[ (%)@ﬁw}

(Ilw+0wz)]

& [Z;;Nl (1(0an--0n2)~ 21 ) + 1 =02 ) .

The expression within this expectation is in general nodatban for the previous
expectation, and so the same set of samples will suffice.
Combining these two derivations, we finally defivigto be

gm _ Okw g

g(m
V" =g W+ g Yo
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where\?ﬁm) and\?,ﬁm) are the following averages based®mdependenZ samples,

g(m _ p-1 ’ (M), (M) (m, (m) _ ) z(mp)

WP S o (F(H+ o Z™P) — £ (i a2 ) ®

om _pae (ZMP)2-1 (M) (M) (M) (mp)

Yo =P ) ( (ki 0w 2™ =2F () + f (- gy, 2™ ))
=1 20y

3.4 Multivariate generalisation

These estimators can be generalised to the case of mulsigd¢savith a multivariate
Gaussian distribution conditional on the set of Wiener eneents which lead to
apprOX|mat|0nSN 1 attimeT —h. If py is now the column vector of conditional
expectauonﬁ*:[SN |W], and2yy is the covariance matrix, théﬁu can be written as

S\(W,Z) = pw +CwZ,

whereZ is a vector of uncorrelated unit Normal variables &gl is any matrix
such that>y = CWC\X, with C\L denoting the matrix transpose. Provideg is
non-singular, the joint probability density function f8is

log ps = —3log| Zw| — 3(Sv— tw)" S (Su — kw) — 3d log(27m),
whered is the dimension oZ. Differentiating this (see [7, 20]) gives

dlogps

o 71’\_ . -T
o = (&) = Gz

whereC,," is shorthand fotC,!)T, and

al a &
St = %t IS ) (S ) 5 = 6T (227Gt
For a givenw,
a 0ogps) 1 (o' [, & (logps)
(&) =g "’@‘(aa) Ez[f<s“) 3w 'W}

02w
+ Trace(ae Ez {f(SN) oz |WD ,

where the trace of a matrix is the sum of its diagonal elemédit®btain efficient
estimators, we again use antithetic variates to get
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Ez [f@) "(:;’S;S) |w} = 7 [ (s +CwZ) — (1w —C2) ) G2
and we uséz[ZZ" —1] = 0 to give
e | 1(&) 25 w]

= E, [% (f(uW+C\NZ)—2f(uw)+f(uW—CWZ))C\;,T(ZZT—I)C\g,l}.

These two results lead to the estimator
T

G(m _ (Okw (m) 92w G(m)
Yy _(09> Yy +Trace< 50 Ys

whereV,"™ andY\" are defined as

P
?Igm) —p1! zl (f(“\g\/m)"'_c\s\rln)z(mp)) _ f(“\s\/m) _C\S\rln)z(m,p)) (C\(/\r/n))i-rz(m’p))
p=
9)
P
YZ(m) —p1 Z % (f (ﬂ\svm)+o'\§vm)z(mp>)_2f (I’l\g\/m))—’— f (U\smeO'\;Vm)Z(m’p)))
"~ x ()T (2P 2™ 1) ()

If the payoff also depends on values at intermediate timasot just at maturity,
these can be handled by omitting the simulation tig@osest to each measurement
time 1, using a timestep twice as big as usual for the time intejtval, th.1].
Using Brownian intergolation conditional on the valtﬁgl, wiih constant drift
and volatility based o1, results in a Gaussian distribution f8t;) of the form

S S Ti—th1/g a thr1—Tj) (Tj—tn
1) =S-1+ ] 2hn 1 (S1+1—S(1_1)+\/( n+1 213]( j—th-1) Co1Z

whereCn,lc,L1 is the covariance matrix fog,.1 conditional onS,_1, andZ is

again a vector of uncorrelated unit Normal variables. @tilely, the valueﬁ(rj)
form a set with a multivariate Normal distribution, condital on the set of dis-
crete Wiener increments, with the values at different tibmeiag independently dis-
tributed. One can then apply the theory above to obtain thsitbédties.

The Likelihood Ratio Method is not applicable when the c@amre matrix>
is singular. This situation occurs, for example, in the LB@arket model driven
by a single Brownian motion [3]. A solution is to introduce aaditional diffusion
in the final timestep, for example by replaciagby > +al, wherel is the identity
matrix. If the extra diffusion is of a similar magnitude (e is approximately
equal to the largest eigenvalueXf this will introduce arO(h) bias in the expected
payoff and its sensitivity, but this bias is of the same oafenagnitude as the weak
convergence error associated with the Euler approximation
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3.5 Optimal number of samples

The use of multiple samples to estimate the value of the tiondil expectations
is an example of the splitting technique [1].W andZ are independent random
variables, then for any functiog(W, Z) the estimator

M
m=1

P
?Myp Y Z (P—l Z g(\/\/(m),z<m~,p)))
p=1
with independent sampl&¥(™ andZ(™P) is an unbiased estimator for
Ewz[g(W.2)] = Ew [Ez[g(W.2) W],
and its variance is
V[Yup] =M~ Vi | Ez[g(W,2) |W]} +(MP) ™ Ew {VZ[Q(W,Z) [WIT .

Applying this general result to our vibrato estimators witkamples foZ for each
simulation path, the variance is of the form

viM~ L4y (MP) L
and the cost of computinﬁwyp is proportional to
ctM+coMP,

with ¢; corresponding to the path calculation agydcorresponding to the payoff
evaluation. For a fixed computational cost, the variancebeaminimised by min-
imising the product

(Vi+V2P 1) (C14+C2P) = V1 CoP+ V1€ + V2 Co+ Vo P E,

which gives the optimum valuypt = /V2C1/v1 C.

¢y is O(h™1) since the cost is proportional to the number of timesteps caiis
O(1), independent off.. If the payoff is Lipschitz, theiYy is O(1) for all paths, and
sov; andv; are bothO(1) andPopr=O(h~/2). On the other hand, if the payoff is
discontinuous with a®(h'/2) fraction of paths being withi®(h/2) of the discon-
tinuity (which assumes a locally bounded density for thérittistion of S(T)) then
for these path&z[Ys|W] = O(h~/2) andV;[Ys|W] = O(h~1). This leads tos; and
v, both beingO(h~%/2) and so agaifopt=0(h~%/2).

In both cases, as — 0, the variance is asymptotically equalwpM 1 and the
cost is asymptotically equal @ M. Thus the use of the vibrato technique does not,
to leading order, increase the variance or the computdtimsacompared to the use
of exact conditional expectation in the few cases for whidhk éxists in a simple
closed form.
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Fig. 1 Comparison of Vega variance for LRM, pathwise and vibrato estirsat

3.6 Numerical results

We consider a 2-dimensional Geometric Brownian Motion,

dél) —r él) dt + o §1> 0\/\4(1)
déz) —r éz) dt + o §2> 0\/\4(2)

with parameters=0.05, 0! =0.2, 0/? =0.3 and correlatiop =0.5 between the
driving Brownian motions. The payoff function is chosen adigital call paying

a discounted value of exprT) if and only if the value o8 (T) exceeds the strike

K. Parameter valuee=1,K =100 are used. This very simple example is chosen so
that in Fig. 1 we can compare the variance for the vibratoutaiion to the variance

of both the LRM method and also the pathwise method in contibimavith the
analytic conditional expectation.

The figure shows the increase in the variance of the estinfatasne of the
Vegas,dV /daV, as the timestep is reduced. We see the rapid increase in the
variance of the LRM method which ®(h~1) asymptotically, and the much slower
O(h~1/2) growth in the variance of the two sets of results based on tlewpse
approach. The difference between the pathwise and vibestolts is due to the
number ofZ samples used in the vibrato method. Only one sample was osed f
the results presented here; increasing this number will {fedahe vibrato variance
converging to the variance of the pathwise method using tiadydc conditional
expectation. It is striking how much larger the LRM variameéNith 2 timesteps it
is already 10 times larger than the vibrato method with alsidgsample, while for
128 timesteps it is 200 times larger.
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4 Adjoint pathwise sensitivity implementation

There is insufficient space in this paper to fully explain &ladgoint implementation,
but it is important to note that the vibrato approach is catgly compatible with
an adjoint calculation of the path sensitivity, and thussipbssible to obtain an
unlimited number of first order sensitivities at a cost whigkimilar to the cost of
the original calculation.

To give an introduction to the ideas, we follow the termirgylaised by the Auto-
matic Differentiation community [2, 4, 6, 15]. Forward maogknsitivity calculation
(like the standard pathwise sensitivity calculation) tstavith a perturbation to an
input and derives the corresponding perturbation to albegbent variables. Doing
this within a computer program at the level of individual dniy operation (e.g. ad-
dition or multiplication) of the form

C= g(aa b)

leads to the corresponding linear perturbation equation

wherec denotes the derivative afwith respect to the perturbed input parameter.

By contrast, the reverse (or adjoint) mode starts with tlog tfzat the final out-
put of interest has unit sensitivity with respect to itsalfid then works backward
through the sequence of computer instructions, to deteriia sensitivity of the
final output to changes in the input parameters of each ictsbru Assuming thaa
andb are only used for the computation ©fn the above example (i.e. they are not
used as inputs for any other calculation) the correspontfitngadjoint equations
are

a= 7a C, b= C

wherea represents the sensitivity of the final output to changes in

The key point of the adjoint approach is that by working baaids from the
payoff calculation through the path evolution back to tretsit can compute the
sensitivity of a single output quantity (such as a payoffction) to an unlimited
number of input parameters (such as initial price, interat, volatility, etc.) at
a total cost which is little more than the original calcubati For details on this
approach and its use in computational finance, see [11, 13, 16

In applying these adjoint ideas to the vibrato approach is plaper, for each
path in the scalar case one would simulate the path Uftq@ and compute the
quantities\?u andY, as defined in (8). These values corresponfifoand Gy, the
sensitivity of the estimated payoff for that path to chanigegy and gy. This is
the initialisation required for the reverse pass of the iatljpath calculation which
will lead to the calculation 08, the sensitivity of the estimated payoff for that path
to changes in an input parametér Similarly, in the multivariate case the adjoint
initialisation isfiy = Yu and>y = Vs, whereYu andYs are as defined in (20).
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5 Conclusions and future work

In this paper we have introduced the idea of vibrato MontddCsensitivity cal-
culations. This can be viewed as an application of the Camdit Monte Carlo
approach, and is a generalisation of the use of conditiox@gatation for payoff
smoothing. It leads to a hybrid method for calculating sinises, applying path-
wise sensitivity analysis to the path simulation, and theelihood Ratio Method
to the payoff evaluation. This offers the computationalcédficy of the pathwise
method, particularly when combined with an adjoint implemagion, together with
the greater generality and ease-of-implementation of LRM.

Although the paper discusses only first order sensitivities approach extends
naturally to higher order derivatives. A similar varianegluction construction for
second order derivatives leads to an estimator with a vegiarich isO(h~1/2) for
payoffs which are continuous but have a discontinuous aeviz, andO(h—%/2) for
payoffs which are discontinuous.

Another direction for future research is the use of the \ibrdea for multilevel
Monte Carlo analysis [12]. Analytic conditional expeabatiis currently used to
treat discontinuous payoffs to obtain improved convergaates with the Milstein
scheme [10]. The vibrato approach will allow this to be gafised to multivariate
cases.
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