
AbstratThis paper presents an overview of the steady and harmoni adjoint methodsfor turbomahinery design using the `disrete' approah in whih the disretizednonlinear Euler/Navier-Stokes equations are linearized and the resulting matrix isthen transposed. Steady adjoint solvers give the linear sensitivity of steady-statefuntionals suh as mass ow and average exit ow angle to arbitrary hangesin the geometry of the blades and this linear sensitivity information an then beused as part of a nonlinear optimization proedure. The harmoni adjoint methodis based on a single frequeny of unsteadiness and allows one to determine thegeneralized fore ating on the blades due to arbitrary inoming time-periodigusts. When the foring is due to the wakes of the upstream blades the adjointapproah an be used to tailor the shape of the inoming wakes to greatly reduethe level of fored vibration they indue. The presented suite of test-ases inludesthe Inlet Guide Vane and the rotor of a High Pressure Turbine.
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1 IntrodutionModern turbomahinery has to meet exating standards of eÆieny resulting inlow weight and highly loaded engine omponents. For this reason, the numerialmethods for design optimization of fans, ompressors and turbines are beominginreasingly popular in the turbomahinery industry. Multidisiplinary designsystems allow the designer to modify blade and end-wall geometries in order tooptimize the steady aerodynami performane [1℄ ful�lling appropriate mehanialonstraints. A typial example is the minimum ross setion of the blade, whihannot be redued below a minimum threshold to prevent the steady workingstress from exeeding the material strength. However, even if the redesigned bladeful�lls the steady stress requirements, it may still be subjet to ritial unsteadystresses due to the blade fored response [2℄. This aeroelasti phenomenon is ausedby the relative motion of adjaent frames of referene, whih transforms steadyirumferential variations of the ow �eld in one frame into periodi time-varyingfores ating on the blades in the other. The resulting fored vibration may lead toHigh Cyle Fatigue, whih may shorten the life of the blades below the target lifeof the engine. This and similar other issues motivate the growing interest of theturbomahinery ommunity in the unsteady design methods. By this expression,one means designing omponents whih an better withstand unsteady aeroelastiloads, suh as those due to fored response.Several funtionals an be envisaged for the optimization of the steady design.One obvious hoie would be the stage eÆieny, whih in turn depends on theexit loss. However, the seondary kineti energy [1℄ is often preferred, being lessa�eted than the loss by possible inauraies assoiated with the turbulene mod-3



els. Other objetive funtions inlude the mass ow and the radial distributionof the exit-plane whirl angle. The formulation of the unsteady design problem isless trivial. Over the past two deades, a number of methods have emerged toarry out the analysis of turbomahinery aeroelastiity, varying from unoupledlinearized potential ow solvers [3, 4℄ to fully-oupled nonlinear three-dimensionalunsteady visous methods [5℄.Within this range, the unoupled linear harmoniEuler and Navier-Stokes (NS) methods have proved to be a suessful ompromisebetween auray and ost [6, 7, 8, 9℄. This approah views the aerodynami un-steadiness as a small perturbation of the spae-periodi mean steady ow. Henethe unsteady ow �eld an be linearized about it and due to linearity an bedeomposed into a sum of harmoni terms, eah of whih an be omputed inde-pendently. The yli periodiity of both the steady and unsteady ow leads to agreat redution of omputational osts, sine the analysis an fous on one bladepassage rather than the whole blade-row making use of suitable periodi bound-ary onditions [9℄. In the linear analysis of blade fored response the harmoniomponent under investigation is that whose frequeny is losest to the mehani-al frequeny of a partiular strutural mode (near-resonane onditions) and theoutput of interest is the worksum funtional [2℄. In the ontext of Lagrangianmehanis, the worksum orresponds to the generalized fore ating on the bladesfor a partiular strutural mode of vibration due to the linear ow unsteadinessand is therefore the obvious hoie for the objetive funtion to be minimized inthe unsteady design problem. When the fored response is aused by the wakesshed by an upstream blade-row, the design spae is that assoiated with the shapeof the inoming wakes and eah wake orresponds to a partiular design of the4



upstream blades.The nonlinear gradient-based optimization of the steady design requires thesensitivities of the objetive funtion to a set of m design variables at eah stepof the optimization. One way of aomplishing this, is to alulate m nonlinearow �elds assoiated with m perturbed geometries and determine the gradient ofthe funtional by �nite-di�erening. Conversely the use of adjoint equations [10℄allows one to determine all m omponents of the gradient with a single adjointomputation, at a ost omparable with that of a single solution of the nonlinearow equations. In the fored response problem, one may want to tailor the shapeof the inoming wakes to minimize the fored response of the downstream blades.In the ontext of the linear unsteady analysis, this would require the solution ofthe linearized equations for eah wake onsidered. On the other hand, the use ofthe harmoni adjoint equations [2, 11℄ provides the generalized fore on the bladedue to an arbitrary wake with a single harmoni adjoint alulation at a ostomparable with that of the solution of the linear harmoni equations. Thus theomputationally most demanding phase of the optimization proess requires onlytwo CFD alulations, whih are the solution of the mean steady ow �eld andthat of the harmoni adjoint equations. Florea and Hall [12℄ applied the adjointmethod to ompute the sensitivity of blade loads to an inoming gust. Two-dimensional invisid unsteady ow appliations were onsidered and the approahwas suessively used for three-dimensional invisid ows [13℄ and two-dimensionalvisous problems [14℄. In this paper the extension of the adjoint tehnique to three-dimensional steady and unsteady visous ows will be presented.The adjoint tehnique for optimal aeronautial design has been pioneered by5



Jameson for the potential ow, Euler and NS equations [15, 16, 17℄. A numberof other researh groups have also developed adjoint CFD odes [18, 19, 20℄ usingthe same `ontinuous' approah in whih the �rst step is to linearize the originalpartial di�erential equations. Then the adjoint equations and appropriate bound-ary onditions are formulated and �nally disretized. The alternative `disrete'approah, whih we use, takes a disretization of the NS equations, linearizes thedisrete equations and then uses the transpose of the linear operator to form theadjoint problem. This approah has been developed by Elliott and Peraire [21, 22℄,Anderson and Bonhaus [23℄, Nielsen and Anderson [24℄, Mohammadi and Piron-neau [25℄ and Kim et al. [26℄ for external aerodynami appliations. One of theadvantages of the disrete approah is that the linear ode an be validated bydiret omparison with the nonlinear ode. Similarly, sine the adjoint ode is ob-tained by transposing the linear operator, it must produe exatly the same outputboth at the routine level and for the objetive funtion. These features enable oneto validate the adjoint against the linear ode. Furthermore both the linearizationof the nonlinear disrete equations and the implementation of the adjoint ode anbe performed by automati di�erentiation software, greatly reduing the develop-ment e�ort. A more detailed omparison between the ontinuous and the disreteadjoint approah an be found in [27℄.The HYDRA suite of 3D Euler/NS odes inludes nonlinear, linear and adjointsolvers for external and internal ows. These odes approximate the ow equationson unstrutured hybrid grids with an edge-based disretization and they makeuse of MPI-based distributed parallel omputing. The main objetives of thispaper are to a) summarize the implementation of the disrete adjoint method6



in the HYDRA framework and b) demonstrate the e�etiveness of the adjointapproah for obtaining the linear sensitivities of steady and unsteady funtionalsat a greatly redued omputational ost when dealing with high-dimensional designspaes. Presented results inlude the appliation of the adjoint method to a suiteof realisti turbomahinery test ases.
2 Adjoint approahWe start by onsidering the disrete nonlinear steady Euler equations with a weakimposition of boundary onditions on solid walls enfored speifying zero massux through the faes on the surfae. As disussed in the next setion, the inow,outow and periodi boundary onditions are also treated speifying appropriateuxes and therefore the disrete system of equations whih is solved has the form:R(U(z);X(z)) = 0 : (1)Here the vetor R represents the disrete ux residuals,U is the vetor of primitiveow variables, X is the vetor of nodal oordinates and z is a set of m designvariables whih ontrols the geometry of the blade. Note that both U and Xdepend on z, beause the omputational mesh deforms onforming to the urrentgeometry of the blade being designed. The nodal displaements are determinedusing the spring analogy [2℄, namely modeling the grid edges as springs with springonstants inversely proportional to their length, enforing suitable perturbationsat the nodes on the blade surfae.Linearizing equations (1) with respet to the perturbation of eah design vari-7



able zi yields Lûi = fi ; i = 1; : : : ;m ;where L � �R�U ; ûi � dUdzi ; fi � ��R�zi :The orresponding m perturbations of a nonlinear funtional J(U(z); z) are:eJi � dJdzi = gT ûi + �J�zi ; i = 1; : : : ;m ; (2)where gT � �J�U :Using the adjoint approah, the m sensitivities an be obtained by evaluatingeJi = vT fi + �J�zi ; i = 1; : : : ;m ; (3)where the adjoint solution v satis�es the equationLTv = g :The equivalene of this formulation omes from the following identity:gT ûi = gTL�1 fi = �(LT )�1g�T fi = vT fi :Eah design variables gives rise to a di�erent vetor fi, whereas if there is only onefuntional J , there is only one vetor g. Thus the adjoint approah requires justone adjoint alulation to obtain the sensitivity of one objetive funtion to anynumber of design variables. On the other hand, the linear approah would requirem solutions of the linearized ow equations to obtain the m ow �elds ûi. (Notethat the vetors fi and g are determined in a omputationally heap preproessingstep). 8



In the fored response problem, the linear harmoni equations are omplexand the linearized funtional eJi orresponds to the worksum integral wi, whihrepresents the generalized fore ating on the blade for a partiular struturalmode [2℄. Denoting by H the Hermitian onjugate operator, one has:eJi = vH fi = wi : (4)The vetor fi depends only on the inoming gust and hene the blade foredresponse an be omputed for any soure of aerodynami unsteadiness, one thesolution v of the harmoni adjoint equations has been determined. In this ase,the grid does not deform and onsequently the term �J�zi appearing in equations (2)and (3) is identially zero and so does not appear in equation (4).Finally note that the elements of the vetor g are non-zero only at nodes wherethe objetive funtion is de�ned, at the nodes on the outlet plane if the funtionalis the exit mass ow and at the nodes on the blade surfae if the funtional is theworksum integral. The analysis of the nonlinear, linear and adjoint equations isarried out in greater detail in the three following setions.
3 Nonlinear ow analysisThe disrete nonlinear analysis of the time-averaged ow �eld is applied to asingle turbomahinery blade-row in the relative frame of referene. The ow anbe modeled by either the Euler or the Reynolds{averaged NS equations oupledwith the Spalart{Almaras turbulene model. Due to the rotational speed, soureterms assoiated with the entrifugal and Coriolis fores appear in the momentumequations. Denoting byU andX the unperturbed ow �eld and nodal oordinates9



respetively, these terms an all be formally inluded in the equationR(U;X) = 0 : (5)Beause the governing equations are approximated on an unstrutured grid usingan edge-based algorithm [28, 29℄, the residual vetor R is a sum of ontributionsfrom all of the edges of the grid, with eah edge ontributing only to the residualsorresponding to the two nodes at either end. The nonlinear system (5) has size(Neqs � N), where N is the number of grid nodes, Neqs= 5 for the invisid owmodel and Neqs=6 for turbulent ows. The 6th omponent in the latter ase isthe turbulene variable, determined with the Spalart-Almaras turbulene model.The boundary onditions to whih the system (5) is subjet an be of threetypes: inow/outow, periodi and invisid/visous wall. The inow and outowboundaries are handled through uxes whih inorporate presribed ow informa-tion and thus they beome part of the residual vetor R. At mathing pairs ofperiodi nodes the periodiity ondition for linear asades is enfored setting theow state on the upper boundary equal to that on its lower ounterpart. In thease of annular domains beause of the use of Cartesian oordinates, the veloityvetors on the upper boundary are obtained by rotating those on the lower one.Combining ux residuals at the two periodi nodes in a suitable manner to main-tain periodiity, this boundary ondition an also be inluded in the de�nition ofthe ux residual vetor R. A no-slip boundary ondition is applied to visous wallsdisarding the momentum residuals and replaing these equations by the spei�a-tion of zero veloity at the boundary nodes. The omputation of the ux residualsat nodes on invisid walls is based on zero mass ux through the boundary faes,but in addition ow tangeny is enfored by setting the normal omponent of the10



surfae veloity to zero and disregarding the normal omponent of the momentumresiduals. Applying these strong wall boundary onditions [27℄ to the system (5)yields: (I�B) R(U) = 0 (6)B U = 0 (7)where B is the projetor whih extrats the normal momentum/veloity ompo-nents at the nodes on invisid wall boundaries and the whole momentum/veloityat the nodes on visous walls. The square matrix assoiated with the linear oper-ator B has size ((N �Neqs)� (N �Neqs)) and is blok-diagonal with eah blok ofsize (Neqs�Neqs). The matrix B has only nw nonzero bloks, nw being the overallnumber of nodes on wall boundaries. Denoting by nw the wall normal and by(nx; ny; nz) its omponents, the generi form of the diagonal blok in the invisidand visous ase is266666666666666664
0 0 0 0 00 n2x nxny nxnz 00 nynx n2y nynz 00 nznx nzny n2z 00 0 0 0 0

377777777777777775 and
266666666666666664
0 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 0

377777777777777775 (8)
respetively.The disrete equations (6) and (7) are solved using Runge-Kutta time-marhingaelerated by Jaobi preonditioning and multigrid. Further details on the im-plementation of the nonlinear solver an be found in referenes [28, 2℄.
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4 Linear ow analysisBoth the variations of the steady ow due to geometri perturbations and the owunsteadiness due to inoming gusts are treated as small linear perturbations. Inthe steady ase, one deliberately uses small perturbations to obtain an aurateestimate of the gradient. Assuming that the ow unsteadiness an also be treatedas a small perturbation of the mean steady ow �eld, one an arry out a linearanalysis of the perturbed ow �eld in both the steady and unsteady ase. Note thatfored response is not a fundamentally linear phenomenon, beause it is alwaysharaterized by a �nite level of unsteadiness and it is not lear a priori thatlinear perturbation methods should give aurate preditions. However a seriesof studies based on the omparison of nonlinear and linear results [6, 30, 31, 32℄as well as linear results and experimental data [33℄ point to the suitability of thelinear approah for turbomahinery fored response.In the steady design problem, the perturbation of a single design variable zindues a ow perturbation û � dU=dz and the perturbed ow �eld U an bewritten as U = U+ û; jjûjj � jjUjjIn the fored response problem, the time-periodiity of the unsteadiness impliesthat the linear time-dependent omponent of the ow an be written as a sum ofharmonis, eah of whih an be analyzed independently due to linearity. Con-sidering just the fundamental harmoni of frequeny !, the unsteady ow �eldU(t) an be written as the sum of the mean steady nonlinear ow �eld U and thereal part of the small harmoni perturbation of known frequeny ! and unknown12



omplex amplitude û: U(t) = U+Rfexp (i!t) ûg: (9)The omplex vetor û represents the amplitude and phase of the unsteady ow.The governing equations for the ow perturbation û are formally idential inthe steady and unsteady ase, sine the linearization of both the disrete steadyequations (6) and (7) and their unsteady ounterpart [9℄ leads to the linear system:(I�B) [(i! + L)û� f ℄ = 0 (10)B û = ûwall : (11)in whih the linear operator L � �R�U gives the sensitivity of the disrete nonlinearresidual R to the ow perturbation û. The perturbation ûwall of the wall veloityis zero for visous walls and its general form in the ase of stationary and movinginvisid walls is derived in referene [2℄.In the steady problem, the frequeny ! is zero and the system of equations (10)and (11) is de�ned in the real domain. The soure term f � ��R=�z providesthe sensitivity of the residual vetor R to the grid perturbation and is non-zerothroughout the omputational domain. An aurate estimate of f is obtained us-ing the omplex variable method desribed in [27℄. In order to ensure the fullonsistene of the steady funtionals (whih depend on the solution of the non-linear ow equations) with their linear sensitivities (whih additionally depend onthe solution of the linearized ow equations), a ompletely reetive treatment ofthe far-�eld boundaries is adopted: the inow and outow boundary onditionsare obtained by linearizing their nonlinear ounterparts, that is setting to zerothe appropriate linearized far-�eld information. For example, the linearized total13



pressure, total temperature and ow angle perturbations are set to zero at a sub-soni inow boundary. The linear periodi boundary ondition is the same as forthe nonlinear equations.In the fored response ase, the system of linear harmoni equations (10)and (11) de�ning the unsteady ow perturbation is omplex and an be viewed asthe frequeny domain ounterpart of the nonlinear unsteady equations. When theinoming gust is the wake shed by the upstream blade-row, the soure term f isnon-zero only at the inow boundary and it depends on the radial distribution ofthe omplex oeÆients of the �rst harmoni of the wake. To leading order, theamplitude of these oeÆients depends on the irumferential width of the wake,while their phase provides the irumferential postion. The far-�eld boundariesare treated with a linearized free-stream boundary ondition enfored by settingto zero the ow perturbation û and its implementation is based on nonreetingboundary onditions to minimize spurious reetions [34℄. The periodi boundaryonditions for the omplex ow �eld û are a generalization of their steady oun-terpart, obtained introduing the inter-blade phase angle ' (IBPA). This is aomplex phase shift exp(i') between the ow �eld at the lower and upper periodiboundaries. In the fored response problem, it arises when the wakes and bladeshave di�erent pithes and therefore there is a di�erene in the times at whihneighbouring wakes strike neighbouring blades.The linear equations are solved with the same pseudo time-marhing approahadopted for the solution of the nonlinear steady equations, that is by introduingand disretizing a �titious time-derivative dû=d� in the system of equations (10)and (11) and time-marhing the solution of the preonditioned system until a14



'steady state' is ahieved. Viewing the linearized ow equations as the linearsystem Ax = b, this proedure an be regarded as the preonditioned �xed-pointiteration xn+1 = (I �M�1A)xn +M�1b ; (12)in whih M�1 is a preonditioning matrix resulting from the Runge-Kutta time-marhing algorithm, the Jaobi preonditioner and one multigrid yle. The it-erative equation (12) onverges if all the eigenvalues of M�1A lie in the unit disentred at (1; 0) in the omplex plane and this ondition is ful�lled for most aeroe-lasti problems of pratial interest. However in some ases the nonlinear base owused for the linearization is haraterized by small-amplitude limit yles relatedto some physial phenomenon suh as small separation bubbles or vortex shedding.These ow instabilities result in a usually small number of omplex onjugate pairsof outliers of the preonditioned linear operator, that prevent the standard iter-ation (12) from onverging. In suh ases onvergene an be retrieved only bysolving the linear equations with algorithms whih are guaranteed to work evenin the presene of outliers. The Generalized Minimum Residuals (GMRES) algo-rithm [35℄ and the Reursive Projetion Method [36℄ belong to this ategory and adetailed desription of their use in the linear ode is provided in referenes [9, 37℄.
5 Adjoint Flow AnalysisThe steady and harmoni adjoint equations are formally idential as they are bothobtained by transposing the linearized ow equations. The only pratial di�ereneis that the steady adjoint problem is de�ned in the real domain with zero frequeny15



and IBPA, while the harmoni adjoint system is de�ned in the omplex domainwith a nonzero frequeny ! and IBPA '. In the following analysis we use theHermitian operator H for both problems, with the impliit assumption that thisredues to the transpose operator T for the steady equations.In order to determine the adjoint ow equations we start by adding equa-tions (10) and (11). This yields:�(I�B)(i! + L) +B� û = (I�B) f + ûwall : (13)The appropriate adjoint equation is then found by taking the Hermitian onjugateof the linear operator and sine the boundary operator B is symmetri this yields:�(i! + L)H(I�B) +B�v = g : (14)At this point it is onvenient to deompose both v and g into orthogonal ompo-nents as v = (I�B)v +Bv = vk + v? ;g = (I�B)g +Bg = gk + g? :Pre-multiplying equation (14) by (I�B) and noting that B is idempotent (i.e.B2=B) shows that vk satis�es the system(I�B)(i! + L)Hvk = gk ; (15)B vk = 0 : (16)These are the equations whih are solved iteratively by the adjoint ode. One vkhas been omputed, v? is alulated in a post-proessing step using an equationobtained by pre-multiplying equation (14) by B:v? = g? �B(i! + L)Hvk : (17)16



In the steady problem, the linearized funtional is given byeJ = vT �(I�B)f + ûwall�+ �J�z = vTk f + vT?ûwall + �J�z :This shows that v? gives the sensitivity of the funtional to the linearized wallveloity ûwall. Note that v? does not orrespond to the normal momentum om-ponent of the analyti adjoint solution at the boundary. In the fored responseproblem, the worksum funtional iseJ � w = vHf = vHk f ;sine there is no grid perturbation and the linearized wall veloity ûwall is zero inboth the invisid and visous ase [2℄.It is not obvious how best to solve the adjoint equations. Using the same itera-tive method as for the nonlinear and linear equations (exept with the transpose ofthe Jaobi preonditioning matrix) was found to work well for invisid ows, butthere were signi�ant stability problems with visous ows. To overome these,Giles analyzed the iterative evolution of the output funtional, �nding that theadjoint ode an be designed to give exatly the same iterative history as the linearode in terms of the output funtional. This is ahieved by properly onstrutingan adjoint version of the usual Runge-Kutta algorithm and using adjoint restri-tion and prolongation operators for the multigrid [38℄. In this way, the stabilityand the iterative onvergene rate of the adjoint ode are idential to those ofthe linear ode, beause this proedure makes the preonditioned adjoint operatorthe exat transpose of the preonditioned linear operator and onsequently theyhave the same eigenvalues. The onvergene rate of the linear ode is in turnequal to the asymptoti onvergene rate of the nonlinear ode for IBPA = 017



and ! ! 0. The same GMRES solver implemented in the linear ode has alsobeen used for solving the adjoint equations (15) and (16) in the presene of small-amplitude limit yles in the underlying base ow solution, to avoid the numerialinstabilities whih would otherwise a�et the standard �xed-point iteration.The linearization of the nonlinear ode and the implementation of the adjointode of the HYDRA suite have been arried out manually. This requires a biggerdevelopment e�ort than using automati di�erentiation tools [39℄, but it allowsone to minimize the CPU time per multigrid iteration. The CPU ost per iter-ation for the steady adjoint ode is only 10-20% greater than for the nonlinearode. The memory requirements are 20-30% greater than for the nonlinear ode,depending on the grid that is used. More details on the optimization of the adjointimplementation are provided in referene [27℄.
6 ValidationUsing the disrete adjoint method, eah routine of the adjoint ode is the exattranspose of its ounterpart in the linear ode [40, 27℄. Therefore the validationof the adjoint ode has been performed at two levels. At the lower level, it hasbeen heked that eah adjoint subroutine provides the same output as its linearounterpart. At the higher level, it has been heked that the adjoint and linearodes produe the same value for both the steady and unsteady funtionals tomahine auray at eah step of the iterative proess. This exat equivalene isone advantage of the fully disrete on the ontinuous adjoint approah.The linear ode itself has also been heked at a subroutine level by omparison18



with the orresponding subroutines in the nonlinear ode [40, 27℄. In addition it hasbeen validated using a range of test ases, starting with simple model problemssuh as the invisid ow over 2D at plate asades for whih a semi-analytisolution is available [41℄. Figure 1 shows the real and imaginary part of thepressure di�erene aross the unstaggered at plates of a linear asade due toinoming wakes with IBPA = �4000. Validation of the visous apabilities isbased on benhmark experimental test ases, suh as the 2D turbine setion ofthe 11th Standard Con�guration, whih is the mid-span blade-to-blade setion ofan annular turbine asade. Experimental measurements and various omputedresults of the steady and unsteady ow �eld due to blade-plunging with presribedIBPA are provided in referene [42℄. The nonlinear mean ow �eld and the linearow perturbation have been omputed with the nonlinear and linear harmoniHYDRA solvers respetively. All omputed results presented in this paper havebeen obtained using a mesh with 17745 nodes and �gure 2 shows a oarser gridwith 7869 nodes. Figure 3 provides measured and omputed pro�les of isentropiMah number on the blade surfae for a transoni working point with exit Mahnumber of 0.96. The high pressure path at about 20 % hord and the rapidpressure rise at about 80 % hord on the sution surfae (�gure 3) are due toa separation bubble and an impinging shok respetively. This is learly visiblein the Mah number ontours of �gure 4, whih also show how both the bladeboundary layers and wakes thiken after passing through the shok. The measuredand omputed amplitude of the linear pressure oeÆient for IBPA = 1800 areompared in �gure 5-a, while measured and omputed values of its phase are shownin �gures 5-b. The overall agreement between measured and omputed results is19



fairly good and the omputed results are in a very good agreement with those inthe literature [42, 33℄.
7 ResultsIn pratie, it is often required to monitor both the steady and the unsteady perfor-mane. For example, the fored response of a blade-row subjet to the onstraint ofonstant irumferential lift an be minimized using steady and harmoni adjointequations to determine the sensitivities of fored response and lift to variations ofthe blade geometry [12℄. In the ontext of gradient-based optimization, at leasttwo strategies an be devised to ope with multiple steady and/or unsteady fun-tionals. One approah is to onsider a single ost funtion whih is a weighted sumof all funtionals. This strategy is often adopted when the design and o�-designperformane have to be optimized simultaneously [43℄. Then numerial unon-strained optimization methods an be used [44℄. The alternative approah is toonsider a onstrained optimization problem in whih one funtional (steady orunsteady) is treated as objetive funtion and the remaining ones are viewed asonstraints. Then onstrained optimization tehniques suh as redued-gradient-type or projeted Lagrangian methods [44℄ an be applied. Using either approah,one has to determine the sensitivities of eah funtional at eah step of the opti-mization and this an be aomplished by solving a set of adjoint equations foreah funtional. The following subsetions provide some appliations of the ad-joint method for determining the sensitivities of steady and unsteady objetivefuntions of turbomahinery interest. 20



7.1 Two-dimensional turbine setionThe �rst problem onsists in determining the sensitivities of two steady funtionalsto variations of the stagger angle � of the turbine blades of the 11th standard on-�guration. The seleted objetive funtions are the mass ow _m and the quadratideviation � = (� � �T )2 of the pithwise averaged exit ow angle � from a targetvalue �T . The referene ow �eld assoiated with the unperturbed geometry isthe transoni ow regime disussed in the previous setion. Figure 6-a shows themass ow omputed by the nonlinear solver for perturbed geometries obtainedletting � vary between �60 and 7:50. Note that eah irle orresponds to adi�erent nonlinear alulation and positive inrements � lead to higher anglesbetween the blade hord and the axial diretion. The nonlinear and the adjointsensitivities of _m are ompared in �gure 6-b. The nonlinear derivative is om-puted with entred �nite-di�erenes on intervals of 1o and eah ross of the urvegiving the linear sensitivity orresponds to a partiular adjoint alulation basedon the nonlinear ow �eld of the orresponding perturbed geometry. The agree-ment between the two results is fairly good sine the relative di�erene is about1% for � < �30 and about 2% for � � �30. The reason why the agreementworsens as � inreases is the growing nonlinearity assoiated with the separationbubble on the sution side. Inreasing the stagger angle results in a higher owinidene, whih in turn widens the separation bubble due to the inreased aero-dynami loading. The quadrati deviation � of the exit angle omputed by thenonlinear ode for �t = 58:6o is plotted versus � in �gure 7-a. The nonlinear andadjoint sensitivities are again in good agreement, as shown in �gure 7-b. Thoughnot learly visible in the plot, a loser inspetion of these results shows that the21



maximum relative di�erene between the nonlinear and the adjoint sensitivity isabout 3%. The linear sensitivity obtained using the linearized solver is identialto that determined by the adjoint ode and therefore has not been reported.7.2 Turbine Inlet Guide VaneThe seond test-ase is the Inlet Guide Vane (IGV) of a high-pressure turbine,whose geometry and surfae mesh are shown in �gure 8. These vanes have a lowaspet-ratio and the two end-wall boundary layers meet on the sution side underthe sweeping e�et of the two passage vorties resulting in a wide region of lowtotal pressure in the entre of the passage. This is learly visible in the non-dimensional total pressure ontours at the outlet plane shown in �gure 9. The gasstream beomes soni in the passage and the pithwise averaged exit Mah numberat blade mid-height is 0:76. The adjoint ode has been used to determine thesensitivities of the outlet mass ow to the rotation of 5 blade airfoils around theirTrailing Edge (TE), that is to variations of their stagger angle. The blade geometryresulting from the perturbation of the mid-height airfoil is shown in �gure 10,whereas �gure 11 ompares the nonlinear and the adjoint estimates of the 5 massow sensitivities. The nonlinear derivatives have been omputed with forward�nite-di�erenes, using the mass ow determined by 5 nonlinear alulations ofthe perturbed ow �eld. The overall agreement of the two estimates is again fairlygood, sine the relative di�erene between the nonlinear and linear sensitivitiesdue to the perturbation of the mid-height airfoil is about 3% and beomes slightlyhigher moving towards the end-walls, due to the nonlinearity of the seondaryows. The linear sensitivities are equal to the adjoint estimates within mahine22



auray and therefore are not reported. We emphasize that a single adjointalulation is required to determine the 5 linear sensitivities, whereas 5 nonlinearor linear alulations are needed with the �nite-di�erene approah.7.3 Unsteady design: turbine rotorThe harmoni adjoint method allows one to determine the sensitivity of foredresponse to the shape of an arbitrary inoming wake, whih an be representedby its radial pro�les of thikness and irumferential position. Considering onlyirumferential displaements relative to a referene wake, however, may simplifythe redesign of the upstream blade-row. In fat, the new upstream blade may beobtained by re-staking the given blade-to-blade airfoils aording to the displae-ments of the wake whih minimizes fored response, provided that suh displae-ments are suÆiently small. If not, the wake shed by the redesigned blade hasto reomputed by means of a nonlinear steady alulation and the searh proesshas to be iterated. The example onsidered onsists of a high pressure turbinerotor whose blades undergo fored response vibrations due to the wakes shed bythe upstream stator. This test-ase was previously analyzed by Vahdati et al. [6℄,who found a good agreement in the fored response predited by linear unoupledand nonlinear oupled methods. Figure 12 shows the blade geometry and surfaemesh, whereas �gure 13 provides the Mah ontours in the mid-height setionfor the hosen steady working onditions. The wakes whih have been analyzedare those obtained by keeping irumferentially �xed the wake lose to the hub,shifting the wake lose to the tip by a phase shift � and linearly interpolatingthe irumferential position of the wakes in between. This orresponds to a linear23



re-staking of the upstream blades ahieved by leaning them in the irumferentialdiretion. The referene wake was extrated by the nonlinear steady ow �eld ofthe upstream stator. The adjoint analysis has been used to determine the work-sum values orresponding to this set of wakes and identify a minimum response.Figure 14 shows the magnitude of the worksum orresponding to the �rst torsionalmode versus the phase shift � and it indiates that the fore ating on the bladesdereases as j�j inreases within the range being onsidered. The physial inter-pretation of this result is that the maximum strutural response ours when theblades are hit by the wakes at the same time at all radii (� = 0), whereas thefored response an be redued by shifting the times at whih the wakes hit theblades at di�erent irumferential positions (inreasing j�j).The results for the full range of phase shifts were obtained from a single har-moni adjoint alulation. Using the standard linear harmoni approah wouldrequire a linear alulation for eah wake, sine eah orresponds to a di�erentright-hand-side fi for the linear analysis. As a hek, linear alulations havebeen performed for a variety of points and they produed idential values for theworksum output.
8 ConlusionsIn this paper the onstrution of the disrete Euler and NS adjoint equationshas been summarized using an algebrai approah and with a strong emphasis onturbomahinery appliations. The development of the presented adjoint methodshas also involved advanes in the methodology for developing and validating fully-24



disrete adjoint solvers. This is due to a) the exat equivalene of eah linear andadjoint routine and b) the use of a partiular form of Runge-Kutta time-marhingsheme for the adjoint equations whih gives exat equivalene with the linear odenot only in the �nal results but also during the iterative evolution.In the framework of gradient-based optimization, the adjoint approah an leadto substantial omputational savings when dealing with high-dimensional designspaes. A suite of realisti turbomahinery test-ases has been used to demon-strate the suitability of the adjoint method for obtaining the linear sensitivities ofsteady and unsteady turbomahinery funtionals. The latter is thought to be the�rst appliation of the adjoint approah to the linear analysis of three-dimensionalvisous blade fored response. The apability of determining the gradient of asalar objetive funtion depending on many design parameters with a single al-ulation has a signi�ant potential for appliation to the design pratie in theturbomahinery industry.
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Figure 1: Real and imaginary part of the pressure di�erene aross the unstaggered atplates of a linear asade due to inoming wakes with IBPA = �4000.
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Figure 2: Coarse mesh for the 2D turbine of the 11th standard on�guration.
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Figure 3: Isentropi Mah number on the blade surfae of the 2D turbine for transoniworking onditions.
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Figure 4: Mah ontours for transoni onditions of the 2D turbine.
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Figure 8: Unperturbed IGV geometry
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Figure 9: Contours of non-dimensionalized total pressure at turbine IGV outlet.
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Figure 10: Perturbed IGV geometry
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Figure 11: Mass ow sensitivity.
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Figure 12: Geometry and grid surfae of the turbine rotor.
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Figure 13: Mah ontours in the mid-height blade-to-blade setion of the turbine rotor.
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Figure 14: Fored response magnitude versus maximum re-staking phase shift.
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