
AbstratThe linear analysis of turbomahinery aeroelastiity is based on the linearizationof the unsteady ow equations around the mean ow �eld whih an be determinedby a nonlinear steady solver. The unsteady periodi ow an be deomposed intoa sum of harmonis, eah of whih an be omputed independently solving a setof linearized equations. The analysis onsiders just one partiular frequeny ofunsteadiness at a time and the objetive is to ompute a omplex ow solution whihrepresents the amplitude and phase of the unsteady ow. The solution proedureof both the nonlinear steady and the linear harmoni Euler/Navier-Stokes solversof the HYDRA suite of odes onsists of a preonditioned �xed-point iteration.This paper douments the numerial instabilities enountered solving the linearharmoni equations for some turbomahinery test ases, highlights their physialorigin and summarizes the implementation of a GMRES algorithm aiming at thestabilization of the linear ode. Presented results inlude the utter analysis of atwo-dimensional turbine setion and a ivil engine fan.
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1 IntrodutionThe aeroelasti phenomena of onern in the turbomahinery industry are bladeutter and fored response, as they may both lead to dramati mehanial failures ifnot properly aounted for in the design of the engine. The blades of an assemblyan undergo utter vibrations when the aerodynami damping assoiated withertain ow regimes beomes negative and is not ounterbalaned by the mehanialdamping. In suh irumstanes, the free vibration of the blades triggered by anytemporary perturbation is sustained through the energy fed into the struture bythe unsteady aerodynami fores. The high yle fatigue (HCF) aused by thesevibrations may shorten the life of the blades below the target life of the engine.Blade fored response may also lead to HCF and is aused by the relative motionof adjaent frames of referene, whih transforms steady irumferential variationsof the ow �eld in one frame into periodi time-varying fores ating on the bladesin the other. Well known examples inlude foring due to the wakes shed by anupstream blade-row and fan inlet distortions due to ross-wind onditions.The unsteady aerodynami analysis intended for turbomahinery aeroelastipreditions must be appliable over wide ranges of blade-row geometries and op-erating onditions as well as unsteady exitation modes and frequenies. Also,beause of the large number of ontrolling parameters involved, there is a stringentrequirement for omputational eÆieny. Over the past two deades, a number ofapproahes have emerged to arry out the analysis of turbomahinery aeroaous-tis and aeroelastiity [1℄. These methods vary from unoupled linearized poten-tial ow solvers in whih the strutural equations are solved independently of theaerodynamis [2, 3℄ to fully-oupled nonlinear three-dimensional unsteady visous3



methods in whih the strutural and aerodynami time-dependent equations aresolved simultaneously [4℄. Within this range, the unoupled linear harmoni Eulerand Navier-Stokes (NS) methods have proved to be a suessful ompromise be-tween auray and ost and are now widely preferred in industry as a fast andaurate tool for aeroelasti preditions. Indeed, a growing body of evidene in-diates that linear visous alulations are adequate for a surprisingly large rangeof appliations [5, 6, 7, 8℄. This method views the aerodynami unsteadiness asa small perturbation of the spae-periodi mean steady ow. Hene the unsteadyow �eld an be linearized about it and due to linearity an be deomposed into asum of harmoni terms, eah of whih an be omputed independently. The yliperiodiity of both the steady and unsteady ow leads to a great redution of om-putational osts, sine the analysis an fous on one blade passage rather than thewhole blade-row making use of suitable periodi boundary onditions. The smallamplitude of the aerodynami unsteadiness often allows one to neglet both theoupling and variations of strutural eigenmodes due to the aerodynami fores [9℄.Therefore the investigation an be arried out onsidering one strutural mode ata time, determined by a �nite-element program and used as an input for alulat-ing the unsteady aerodynami fores. The omplete aerodynami analysis onsistsof two phases: a) alulation of the nonlinear steady ow �eld about whih thelinearization is performed and b) solution of the linear harmoni equations.The HYDRA suite of parallel odes [10, 11, 12℄ inludes both a nonlinear(hyd) and a linear harmoni (hydlin) NS solver. The solution proedure for bothhyd and hydlin an be viewed as a preonditioned �xed-point iteration. Usuallythe linear ode onverges without diÆulty, but problems have been enountered4



in situations in whih the steady ow alulation itself failed to onverge to asteady state but instead �nished in a low-level limit yle, often related to somephysial phenomenon suh as vortex shedding at a blunt trailing edge, unsteadyshok/boundary layer or shok/wake interation. The main objetives of this paperare to� highlight and disuss the relationship between the numerial instabilities ofthe linear solver for some turbomahinery test ases and the physial proper-ties of the underlying base ow;� demonstrate the e�etiveness of the Generalized Minimum Residuals (GM-RES) algorithm [13℄ for retrieving the numerial stability of the linear ode.Setions 2 and 3 present an overview of the steady nonlinear and unsteady linearmodel respetively; the main features of the GMRES solver and some basi oneptsonerning the numerial stability of �xed-point iterations are provided in setion4. Finally, setion 5 presents two realisti appliations, the utter analysis of atwo-dimensional turbine setion for subsoni and transoni working onditions andthat of a ivil engine fan from near-hoke to near-stall operating onditions.
2 Nonlinear ow analysisThe time-dependent Euler and Reynolds-averaged NS equations in onservativeform are approximated on unstrutured hybrid grids, using an edge-based dis-retization [14℄. Considering the omputational domain onsisting of all the pas-sages of a blade-row leads to a system of nonlinear ordinary di�erential equations
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(ODE0s) of the form: T dUdt +R(U;Ub;X; _X) = 0 ; (1)where t is the physial time, T is the Jaobian of the transformation from primitiveto onservative variables, U is the vetor of primitive ow variables, R is the nodalresidual, X and _X are the vetors of nodal oordinates and veloities respetively.The vetor Ub is used to enfore time-dependent disturbanes at the inow andoutow boundaries suh as wakes shed by an upstream blade row. Eah edge ofthe grid ontributes only to the residuals orresponding to the two nodes at eitherend and the residual vetor R depends also on the nodal veloities _X, beause thegrid an deform following the blade vibration. The system (1) has size (Neqs�N0),where N0 is the number of grid nodes, Neqs = 5 for the invisid ow model andNeqs=6 for turbulent ows. The 6th omponent in the latter ase is the turbulenevariable, determined with the Spalart-Almaras turbulene model. The residuals Ralso inlude the soure terms due to the entrifugal and Coriolis fores, sine theequations refer to the relative frame of referene.The �rst stage of the aeroelasti analysis requires the omputation of the meansteady ow U about whih the linearization of the unsteady terms will be ar-ried out. Negleting the time-dependent terms in the governing equations (1) anddenoting by X the mean nodal oordinates yieldsR(U;X) = 0 ; (2)whih an be solved for a single blade-passage, as the mean ow is irumferentiallyperiodi. The system (2) has size (N � Neqs) where N = N0=Nblades and Nbladesis the number of blades in the blade-row. The boundary onditions to whih the6



system (2) is subjet an be of three types: inow/outow, periodi and invis-id/visous wall. The inow and outow boundaries are handled through uxeswhih inorporate presribed ow information and thus they beome part of theresidual vetor R. At mathing pairs of periodi nodes the periodiity onditionfor linear asades is enfored setting the ow state on the upper boundary equalto that on its lower ounterpart. In the ase of annular domains beause of the useof Cartesian oordinates, the veloity vetors on the upper boundary are obtainedby rotating those on the lower one. Combining ux residuals at the two periodinodes in a suitable manner to maintain periodiity, this boundary ondition analso be inluded in the de�nition of the ux residual vetor R.A no-slip boundary ondition is applied to visous walls disarding the momen-tum residuals and replaing these equations by the spei�ation of zero veloityat the boundary nodes. The omputation of the ux residuals at nodes on invis-id walls is based on zero mass ux through the boundary faes, but in additionow tangeny is enfored by setting the normal omponent of the surfae veloity tozero and disregarding the normal omponent of the momentum residuals. Applyingthese strong wall boundary onditions [15℄ to the system (2) yields:(I�B) R(U;X) = 0B U = 0 ; (3)where B is a projetion matrix whih extrats the momentum/veloity omponentsat the wall boundaries. The disrete equations (3) are solved using Runge-Kuttatime-marhing aelerated by Jaobi preonditioning and multigrid [14℄.
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3 Linear unsteady ow analysisDue to the small level of unsteadiness, the time-dependent variables an be writtenas the sum of a mean steady part and a small amplitude perturbation:X(t) = X+ ~x(t); jj~xjj � jjXjjUb(t) = Ub + ~ub(t); jj ~ubjj � jjUbjjU(t) = U+ ~u(t); jj~ujj � jjUjj ;where the perturbations are overlined with a tilde symbol. Linearizing equations(1) about the mean steady onditions (X;U) yieldsT d~udt + L~u = ~f1 + ~f2 ; (4)where the linearization matrix L and the vetors ~f1 and ~f2 are given byL = �R�U ; ~f1 = ���R�X ~x+ �R� _X _~x� ; ~f2 = � �R�Ub ~ub :The unsteady periodi ow ould be determined by solving the linear equations (4),but due to linearity an be deomposed into a sum of omplex harmonis of theform ~uk(t) = <(eik!tûk), eah of whih an be omputed separately. The omplexelements of ûk de�ne the amplitude and phase of the unsteadiness at frequeny k!.Analogous expansions hold for ~x(t), _~x(t) and ~ub(t). Inserting suh expressions inequation (4) and onsidering only the mode k=1 for simpliity, yields the harmoniequations (i!T + L)û = f̂1 + f̂2 ; (5)whih an be viewed as the frequeny domain ounterpart of equations (4). Thelinear system (5) is omplex and it has size (N � Neqs). The vetors f̂1 and f̂2are its right-hand-side and they give the sensitivity of the residuals to harmoni8



deformations of the mesh and to inoming harmoni perturbations respetively.Based on an idea of Ni and Sisto [16℄, the linear equations are solved with thesame pseudo time-marhing approah adopted for the solution of the nonlinearsteady equations, that is by introduing a �titious time-derivative dû=d� andtime-marhing the solution of the system of linear ODE's:dûd� = � h(i!T + L)û� f̂1 � f̂2iuntil dû=d� vanishes. Disretizing this time-derivative leads to the linear �xed-point iteration disussed in greater detail in the following setion.In the utter ase, the objet of the analysis is to assess the stability of a partiu-lar strutural mode. The frequeny ! and the blade mode shape are alulated witha �nite-element program and used to determine f̂1, whih is non-zero throughoutthe omputational domain sine the grid deforms following the harmoni vibrationof the blade, whereas f̂2 is set to zero. The phase between the motion of adjaentblades (Inter-blade Phase-Angle or IBPA) is an additional parameter of the anal-ysis. It is given by �j = 2�j=Nblades and the index j usually alled nodal diameteran take any integer value between 0 and (Nblades � 1), though the ritial valuesare usually the �rst few ones, as shown in [9℄. Equations (5) an then be solved fora single passage, introduing the omplex phase shift ei�j between the two periodiboundaries. The output of interest is the net energy ux from the struture to theworking uid over one yle of vibration, de�ned by the worksum integralW = Z Tv0 ZS publade � dSdt ;in whih Tv is the period of vibration, p and ublade are the time-dependent bladestati pressure and veloity respetively, dS is the elemental blade surfae with9



outward normal and S is the overall blade surfae. A positive sign indiates stabilityas energy is transferred from the struture to the uid, whereas a negative signindiates the ourrene of utter. In the engineering ommunity, the logarithmiderement Æ is a more frequently used stability parameter, whih depends on theratio between the amplitude V of two onseutive yles of vibration. It is de�nedas Æ=V (t+ Tv)=V (t) and it an be proved thatÆ = W!2 :In fored response, the objet of the analysis is to determine the unsteady foresating on the blade due to any of the harmoni omponents, into whih the inom-ing time-periodi gust an be deomposed. The IBPA depends on the geometriproperties of the problem. In the ase of foring oming from irumferentially pe-riodi wakes, the blades and the wakes may have di�erent pithes and hene thereis a di�erene in the times at whih neighbouring wakes strike neighbouring blades.Therefore the IBPA of the fundamental harmoni is 2�Nwakes=Nblades. Again thelinear harmoni equations (5) an be solved for a single blade passage using om-plex periodi boundary onditions. The vetor f̂1 is zero throughout the domainbeause the mesh is stationary and the vetor f̂2 is non-zero only at the inlet oroutlet boundaries, where the harmoni perturbation is presribed. The unsteadyaerodynami fore ating on the blade an be alulated in a post-proessing stepfor eah strutural mode using the unsteady pressure �eld determined with theharmoni analysis.The linear unsteady analysis is ompleted by enforing suitable linearizedboundary onditions. The inow, outow and (omplex) periodi boundary on-ditions an all be symbolially inluded into equations (5). Taking into aount10



the linearized strong wall boundary ondition, however, the system to be solvedbeomes: (I�B) h(i!T + L)û� f̂1 � f̂2i = 0B û = ûwall : (6)The omponent ûwall of the linear ow veloity at the wall is zero for both invisidand visous walls in the fored response problem as the grid does not deform,while it is non-zero for both wall types in the utter problem, due to the surfaedisplaements and in the invisid ase also to the rotation of the wall normals [15℄.The implementation of the inow and outow boundary onditions is based on one-dimensional nonreeting boundary onditions [17℄. Equations (6) are then solvedusing the same preonditioned pseudo time-marhing method as for the nonlinearequations.
4 GMRES stabilizationThe linearized harmoni NS equations (6) an be viewed as a simple linear systemof the form Ax = b : (7)Though equations (6) are omplex, hydlin has been written using real arithmeti,that is onsidering real vetors of size (2�Neqs�N) with the fator 2 aounting forreal and imaginary part, rather than omplex vetors of size (Neqs�N). This hoiehas been made beause of errors often introdued by highly optimized FORTRANompilers when dealing with omplex arithmeti. Therefore the system (7) alsohas dimension (2�Neqs �N) and the ode for its solution an be regarded as the11



�xed-point iteration: xn+1 = (I �M�1A)xn +M�1b ; (8)in whih M�1 is a preonditioning matrix resulting from the Runge-Kutta time-marhing algorithm, the Jaobi preonditioner and one multigrid yle. Linearstability analysis of (8) shows that neessary ondition for its onvergene is thatall the eigenvalues of (I �M�1A) lie within the unit irle entred at the originin the omplex plane or equivalently that all the eigenvalues of M�1A lie in theunit dis entred at (1; 0). For most aeroelasti problems of pratial interest, thisondition is ful�lled and the linear ode onverges without diÆulty. However anexponential growth of the residual has been enountered in situations in whihthe steady ow alulation itself failed to onverge to a steady-state but instead�nished in a small-amplitude limit yle, related to some physial phenomenon suhas separation bubbles, orner stalls and vortex shedding at a blunt trailing edge.The solution proedure of the nonlinear steady equations (3) is not time-auratebeause of the loal time-stepping tehnique and the Jaobi preonditioner usedfor the integration, but it nevertheless reets some physial properties of the ow�eld due to the pseudo time-marhing strategy assoiated with the Runge-Kuttaalgorithm. Physial small-amplitude limit yles do not prevent the steady solverfrom onverging to an aeptable level, although their e�et is sometimes visiblein small osillations of the residual. However they result in a small number ofomplex onjugate pairs of eigenvalues of the linearization matrix (I�M�1A) lyingoutside the unit irle (outliers) and thus ausing the exponential growth of theresidual of the linear equations. This problem has been overome by implementinga preonditioned GMRES algorithm in hydlin. GMRES is an iterative method for12



the solution of linear systems, belongs to the family of Krylov subspae methods[13℄ and is guaranteed to onverge even in the presene of outliers. The Krylovsubspae of dimension m generated by the preonditioned operator M�1A and thevetor M�1b is the vetorial spae spanned by the vetors ((M�1A)jM�1b; j =0; : : : m� 1), that isKm =< M�1b; (M�1A)M�1b; : : : ; (M�1A)m�1M�1b > :The GMRES algorithm is based on the progressive redued Arnoldi fatorization[13℄ of M�1A: M�1AQm = Qm+1 ~Hm ; (9)where m is the urrent iteration, ~Hm is a Hessemberg matrix of size ((m+1)�m),Qm is a matrix of size ((2 � Neqs � N) �m) whose m olumns qj (j = 1; : : : ;m)form an orthonormal basis for the Krylov subspaeKm and Qm+1 is Qm augmentedwith a new Krylov vetor qm+1. Denoting by hj;m (j = 1; : : : ;m) the elements ofthe mth olumn of ~Hm, the mth olumn of equation (9) an be written as:M�1Aqm = h1;mq1 + : : :+ hm+1;mqm+1 ; (10)whih shows that qm+1 satis�es an (m+1)�term reursive relation involving itselfand the previous m Krylov vetors. It should be noted that the size of eah qjis equal to that of the omplex linear ow �eld. At the mth GMRES iterationthe solution of (7) is approximated by the linear ombination of the m qj's whihminimizes the 2-norm of the residual rm = M�1(b �Axm) and is thus given byxm = xstart + Qmtm, in whih xstart is the initial solution and tm is the olumnvetor ontaining the m oeÆients of the linear ombination. For this reason thealgorithm an be viewed as an optimization proess.13



The implementation of the preonditioned GMRES solver in hydlin has beenarried out at the top routine level. At this level, the pseudo-ode of the preondi-tioned multigrid iteration without GMRES looks like:x = xstartx = mg(A;x;b; nl)xfinish = xwhere `mg' is the ore routine whih performs the preonditioned �xed-point iter-ation (8) and xfinish is the solution after nl multigrid yles. The GMRES solverdoes not require any hange to `mg' and uses it as a blak-box to determine thepreonditioned Krylov vetors M�1Aqj . The omputationally heap minimizationis also arried out at the top routine level and the pseudo-ode of the main hydlinusing GMRES is:q1=mg(A;xstart;b; nl)�xstart; q1=q1=jq1jfor m = 1 : nKrM�1Aqm = �mg(A;qm;0; nl)+qmqm+1 from equation (10); qm+1=qm+1=jqm+1jdetermine tm whih minimizes rmendxfinish = xstart +QnKrtnKrThe �rst Krylov vetor q1 is the normalized residual of the preonditioned system,nKr is the overall number of GMRES iterations and nl is the number of multigridyles per GMRES iteration. Note that the right-hand-side of (7) is set to zero be-fore using `mg' to determine M�1Aqm. The numerial solution of the optimization14



problem of dimension m whih leads to tm is desribed in [13℄. The value of nKrrequired for full onvergene is muh smaller than the size of A, but neverthelessvery big with respet to the omputing resoures usually available. This is dueto the fat that at the mth iteration all m qj's are needed to ompute the neworthogonal vetor of the basis. This problem is overome using the restart option,that is performing nKr iterations and re-starting GMRES from the updated solutionre-omputing from there a new set of nKr Krylov vetors. This is ahieved by wrap-ping the inner loop desribed above with an outer one whih restarts GMRES eahtime. Values of nKr between 10 and 30 make the omputation a�ordable even forlarge problems and a good onvergene level is usually ahieved within 20 restartedyles. Unfortunately the restarted solver may lead to numerial stagnation of theresidual [13℄. Extensive numerial validation on a variety of turbomahinery testases, however, has highlighted that this an be avoided provided that both nKrand nl are hosen above ertain ase dependent threshold values. Inluding theextra CPU-time required for the matrix-vetor produts and the minimization pro-ess of GMRES in the ost of one multigrid yle, the CPU-time for exeuting agiven number of multigrid yles using GMRES is only from 1 to 3 % higher thanusing the standard iteration. The additional burden assoiated with GMRES is theextra memory alloation for the nKr Krylov vetors. It should also be noted thatdi�erent hoies of nl, as well as other multigrid parameters suh as the number ofiterations on the di�erent grids, lead to a di�erent preonditioner M�1 and there-fore they play a ruial role in determining the overall number of multigrid ylesto ahieve the desired onvergene level. The experiene gained so far has shownthat a) the onvergene rate (slope of the urve residual vs. number of multigrid15



yles) always inreases with nKr and b) there exist values of nl whih maximize it.The upper threshold of nKr is usually �xed by the available omputing resoures.Another advantage of GMRES is that it allows the straightforward determina-tion of the unstable eigenmodes, as the algorithm has the property of solving theleast stable modes �rst, namely those whose eigenvalues are farthest from the entreof the unit irle in the omplex plane. As shown in the next setion, this enablesone to relate the soure of numerial instability to the physial unsteadiness whihauses it. In order to establish the relationship between the least stable modes andthe set of Krylov vetors, let us start by onsidering the partial redution of M�1Abased on the mth Krylov subspae:QHmM�1AQm = Hm ; (11)where Hm denotes the upper (m �m) portion of ~Hm and the supersript H theHermitian onjugate operator. The eigenvalues �j of Hm are alled Ritz values andthey are de�ned by Hmyj = �jyj ; j = 1; 2; : : : ;m (12)where yj is the right eigenvetor of Hm assoiated with �j. Combining equations(11) and (12) yields QHmM�1AQmyj = (QHmQ)�jyj ; (13)and onsequently QHm(M�1A� �jI)Qmyj = 0 : (14)The m vetors Qmyj = mXl=1(yj)lql j = 1; 2; : : : ;m (15)16



are the Ritz vetors of A based on the mth Krylov subspae, whih provide anapproximate estimate of the sought dominant or least stable eigenmodes. In fat,equation (14) states only that the residual of eah eigenvetor reseig = (M�1A ��jI)Qmyj is orthogonal to the subspae Km, but the expression (15) would providethe exat eigenmodes only if reseig=0. It an be proved, however, that the 2-normof reseig depends linearly on the residual of the linear equations. For all the testases onsidered, 150 GMRES iterations without restart have been suÆient toahieve a good onvergene level of the linear equations and therefore to obtain anaurate estimate of the dominant modes.Finally, it should be noted that the most appropriate de�nition of the ow �elddetermined by solving the nonlinear equations in the presene of small limit yleswhih then generate the linear instabilities would be `base' or `bakground' ow.Nevertheless the adjetives `mean' and `steady' are sometimes used as synonymsin this paper, underlining the fat that suh ow �eld has been omputed with anumerial approah suitable for the solution of the steady ow equations.
5 Results5.1 Two-dimensional turbine setionOne of the test ases that has been used for both assessing the preditive apabilitiesof hydlin and testing the implemented GMRES solver is the 2D turbine setionof the 11th Standard Con�guration, whih is the mid-span blade-to-blade setionof an annular turbine asade with 20 blades. The annular test-rig and asadegeometry are briey desribed in referene [18℄, whih also provides experimental17



measurements and various omputed results of the steady and unsteady ow �elddue to blade-plunging with presribed IBPA. Two steady working onditions areonsidered: a subsoni one with exit Mah number of 0.68 and a transoni onewith exit Mah number of 0.96. The omputational grid that we have used for theinvestigation is a quasi-orthogonal H-type mesh with medium re�nement: it has273 nodes in the streamwise and 65 nodes in the pithwise diretion, for a totalof 17745 grid nodes. A preliminary mesh-re�nement analysis arried out using aoarser 7869-node (183 � 43) and �ner 39673-node (409 � 97) mesh has shown nodi�erene of pratial interest between the results obtained with the medium and�ner grids. The oarser mesh is shown in �gure 1 while �gure 2 provides measuredand omputed steady isentropi Mah number Mis on the blade surfae for thetwo working onditions. The variable on the x-axis is the nondimensional positionalong the true blade hord . The high pressure path at about 20 % hord and therapid pressure rise at about 80 % hord on the sution surfae in the transoni ase(�gure 2-b) are due to a separation bubble and an impinging shok respetively.This is learly visible in the Mah number ontours of �gure 3, whih also showhow both the blade boundary layers and wakes thiken after passing through theshok. Figure 4 provides measured and omputed amplitude and phase of the �rstharmoni of the unsteady pressure oeÆient p. Its de�nition is:p = p̂(p01 � p1) h ;where p̂ is the omplex amplitude of the linear unsteady pressure on the blade sur-fae, p01 and p1 are the mass-averaged inlet total and stati pressure respetivelyand h is the bending amplitude. For both working onditions, large di�erenes be-tween measured and omputed results are visible on the sution surfae where most18



of the unsteady phenomena take plae. However the numerial results presented inthis paper are in very good agreement with those in the literature [18, 8℄.The stability urves (Æ vs: IBPA) for both ow regimes are provided in �gure5-a, whih shows that the system never beomes aeroelastially unstable. Thenonlinear alulations of both the subsoni and transoni base ow onverge withoutdiÆulties to mahine epsilon (10�18). However all the linear alulations basedon the transoni base ow diverge using the standard ode and onvergene an beretrieved only using GMRES, as shown in the onvergene histories of hydlin in�gures 5-b and 5-, whih refer to IBPA= 180o. In both �gures the variable onthe x-axis is the number of multigrid yles and that on the y-axis is the logarithmin base 10 of the root-mean-square of all nodal residuals (rms). The number atthe right of the label 'GMRES' in the legend is nKr. Figure 5-b illustrates thee�et of nl on the onvergene histories of GMRES 20: among the 4 values triedfor this test ase the minimum overall number of multigrid yles or equivalentlyof CPU-time required for dropping the residual below -8 is obtained for nl = 3and nl = 10. All the GMRES onvergene histories in �gure 5- refer to nl = 3and they highlight that the onvergene rate inreases monotonially with nKr inthe range of pratial interest. All linear alulations based on the subsoni owregime onverge also without GMRES and the onvergene histories of the linearode (IBPA=180o) using the standard iteration and GMRES 20 are provided in�gure 5-d. The memory requirements with 3 grid levels for the multigrid shemeare 52 and 86 Mbytes respetively. Both alulations have been started from thesame initial solution and run on 8 proessors of a omputer luster onsisting of24 four-proessor Sun Ultra-80 nodes, with a Sun Blade-1000 front-end. The 70019



iterations for ahieving a residual level of -17.5 with GMRES have been arried outin about 27 minutes of CPU-time, whereas the 1800 needed to obtain the samelevel with the standard iteration have required 69 minutes.In order to investigate the origin of the numerial instability of the standardode for transoni ow onditions, the �rst 150 dominant eigenmodes of the pre-onditioned linearization matrix M�1A for nl=1 have been determined using theproedure desribed in the previous setion and they are plotted in the omplexplane of �gure 6. The two omplex onjugate pairs of outliers labelled with 1 and2 are responsible for the exponential growth of the residual assoiated with the�xed-point iteration (8). In fat, its asymptoti onvergene rate is determined bythe spetral radius � of the linear operator M�1A and it an be proved that therelationship between the asymptoti slope of the residual urve and � is:� (log(rms))Nmg � log � ; (16)where Nmg is the number of multigrid yles aross whih the variation of rms isonsidered. This equation provides the theoretial relationship between the slopeof the exponentially growing residual urve of the standard iteration (�gures 5-band 5-) and the spetral radius of the linear operator (radius of the outlier 1). In-serting the omputed values in it yields 46:90e�3 � 47:53e�3, whih demonstratesthe orretness of the mathematial analysis. Figure 7-a shows that the maximumpressure amplitude of the eigenvetor assoiated with the omplex onjugate pairof outliers 1 ours at the edge of the separation bubble on the sution surfae andthis proves that the origin of the numerial instability is the small limit yle as-soiated with this unstable separation. The eigenmode assoiated with the outlier2 also orresponds to the separation on the sution surfae and therefore is not20



reported here. The pressure amplitude of the eigenvetor assoiated with the om-plex onjugate pair of eigenvalues 3 is provided in �gure 7-b. Nonzero amplitudesour both in the shok and the separation bubble. The eigenvalues of this modelie in the unit disk, but they would be responsible for a very low onvergene rateof the standard ode in the absene of any outlier beause of their proximity to theunit irle. It has also been found that the two dominant eigenmodes desribedabove are independent of the IBPA, despite the fat that M�1A depends on it.This phenomenon is probably due to the high spatial loalization of the unstablemodes and is highlighted in table 1, whih reports the real and imaginary parts ofthe �rst 3 least stable modes for 3 di�erent IBPA's. This feature an be exploitedby `hybrid' solvers suh as the Reursive Projetion Method [19℄. This algorithmuses Newton's method for determining the projetion of the solution on the smallunstable eigenspae assoiated with the few outliers and the standard �xed-pointiteration for alulating the projetion of the solution on the bigger spae assoi-ated with the remaining modes. In this way, the unstable eigenspae does not needto be reomputed for eah IBPA. The independene of the unstable eigenspae onthe IBPA, however, annot be exploited by GMRES.5.2 Three-dimensional fanThe seond test ase onsidered is a three-dimensional fan rotor whose geometryand surfae grid are shown in �gure 8. This grid has only 157441 nodes and is quiteoarse, but all the phenomena disussed in this setion have been also observed with�ner omputational meshes and for other test ases. The linear utter analysishas been arried out for 4 points of a onstant-speed working line using hyd and21



IBPA (o) mode <(�) =(�)36 1 0.640143 0.9849622 0.665552 0.9921783 0.004075 0.004150180 1 0.640016 0.9849562 0.665476 0.9923223 0.004076 0.004150270 1 0.639930 0.9847632 0.665644 0.9924443 0.004075 0.004150Table 1: First 3 dominant eigenvalues for 3 di�erent IBPA's.hydlin. The omputed pressure ratio � is plotted versus the omputed mass ow_m in �gure 9-a. Their de�nition is:� = p02p01 ; _m = ZS2 �2 u2 � dS2 :All variables in the two expressions above refer to the base ow: p01 and p02 arerespetively the inlet and outlet mass-averaged total pressure, S2 is the area of theoutlet boundary, �2 is the outlet density and u2 is the outlet veloity vetor. Notethat the values of both � and _m in �gure 9-a are given as perentage deviations fromtheir design values. For all 4 working onditions the residual of the nonlinear steadyequations drops by four orders of magnitude (�gure 9-b), ending in a low-amplitudelimit yle. 22



The analysis of the utter stability of the �rst ap mode has been arried outfor all 4 working onditions and the omputed logarithmi derement is plotted in�gure 10. As expeted, the least stable aeroelasti modes are those assoiated withthe �rst few IBPA's and the blades undergo utter in the 2 nodal diameter modeat the base ow onditions D, whih are the losest to stall. All linear alula-tions have been performed using GMRES, as they were otherwise unstable. This isvisible in the onvergene plots of hydlin reported in �gure 11, whih refer to thebase ow onditions D and to IBPA=180o. Figure 11-a shows that the GMRESsolver stagnates if nl=1 and an aeptable onvergene rate an be ahieved onlyusing nl=3 and nKr � 30. The GMRES solver does not stagnate using nKr=100with either values of nl, but a better onvergene rate is obtained with nl = 3(�gure 11-b). It should be noted that solving the linear equations about a `pseudotime-averaged' base ow, obtained by averaging the nonlinear solution over one nu-merial limit yle of hyd, has not removed the instability of the linear alulationsusing the standard iteration. It might be more appropriate to linearize the owunsteadiness either about the `stabilized' solution of the nonlinear equations, de-termined by using GMRES [20℄ or about the true time-averaged ow. This an beobtained either by introduing unsteady stress terms in the nonlinear equations [21℄or solving the time-dependent nonlinear equations and then time-averaging the owsolution. It is the authors' view, however, that these approahes would also notremove the linear instabilities of the standard linear solver. In fat, the limit ylesunder disussion are stable and the theory of dynamial systems foresees that theunderlying steady solutions are unstable [22℄ leading to the exponential growth oftheir linear perturbations. Figure 11-b also highlights that starting GMRES from23



the last solution of the standard hydlin after the alulation has diverged, resultsin an initially sharp redution of the residual and then in a onvergene rate simi-lar to that of the desending branh of the standard ode. This behaviour an beexplained by the presene of a few outliers: after a few hundred multigrid ylesneeded to resolve the stable modes, the unstable modes assoiated with the outliersbeome dominant and determine the exponential growth of the residual of the stan-dard iteration. They are instead solved very rapidly restarting the alulation withGMRES. In fat, the subset of the spetrum of M�1A with the �rst 150 dominanteigenvalues has 4 omplex onjugate pairs of outliers, labelled from 1 to 4 in orderof dereasing distane from the entre of the unit dis in �gure 12, whih refers tonl=1. Inserting in equation (16) the omputed data relative to the slope of theasending branh of the residual urve of the standard iteration (�gure 11) and thespetral radius of M�1A (radius of the outlier 1) yields 38:82e�3 � 40:17e�3, whihon�rms one more the orretness of the mathematial analysis.The eigenmode assoiated with the pair of outliers 1 is due to the hub ornerstall, sine its maximum pressure amplitude ours in a small region between thesution side and the hub lose to the Trailing Edge (TE) as shown in �gure 13-a. Contours of the same variable in a blade-to-blade setion lose to the hub arepresented in �gure 13-b, while a two-dimensional view of the ow separation ausedby the orner stall is given in �gure 13-, whih shows the veloity vetors in thesame blade-to-blade setion. The eigenmode assoiated with the pair of outliers3 orresponds to a separation bubble on the sution side lose to the LeadingEdge (LE) in the hub region. The eigenmodes 2 and 4 orrespond to the same owphenomena as 1 and 3 respetively. The numerial instabilities of the standard ode24



are therefore due to the linearization of the small-amplitude limit yles assoiatedwith the hub orner stall and the LE separation.The eigenmode orresponding to the omplex onjugate pair 5 does not ausethe exponential growth of the residual as it lies in the unit dis, but it would beresponsible for a very low onvergene rate of the standard ode in the absene ofany outlier beause of its proximity to the unit irle, as disussed in [19℄. Thiseigenmode ontains traes of the previous 4 and orresponds also to a shok onthe sution side lose to the tip. Similarly to the turbine test ase, the dominanteigenmodes desribed above have been found to be independent of the IBPA andthis might be due again to their high spatial loalization.All alulations have been run with 4 grid levels for the multigrid sheme on theSUN luster desribed in the previous setion. The CPU-time of one multigridyle depends on the number of iterations performed on eah grid level. The valueshosen for this test ase have led to a CPU-time of about 56 seonds for onemultigrid yle of hydlin using 8 proessors, and the 800 yles needed for a goodonvergene of eah linear alulation have thus required an overall time of about12 hours. By omparison, the CPU-time for one multigrid yle of hyd is abouthalf of that needed by hydlin.
6 ConlusionsThis paper has presented the linear analysis of turbomahinery aeroelastiity froma simple algebrai viewpoint, whih allows one a relatively straightforward under-standing of the relationship between the numerial instabilities of the linearized25



solver of the Navier-Stokes equations and the small unsteady phenomena of thebase ow �eld. The implementation of the GMRES algorithm in the existing linearNS solver based on a preonditioned �xed-point iteration has stabilized the ode,allowing the aeroelasti analysis to be arried out even in presene of small unsteadyphenomena in the base ow, whih are believed not to have any signi�ant e�eton the aeroelasti behaviour of the omponent under investigation. The CPU-timerequired for one multigrid yle in the GMRES solver is only from 1 to 3 % higherthan using the standard iteration. The overall number of multigrid yles needed toahieve a given level of onvergene with the restarted GMRES algorithm dependson both the number of GMRES iterations per restarted yle and the number ofmultigrid yles per GMRES iterations. Inreasing the former parameter alwaysimproves the onvergene rate, whereas optimal ase dependent values seem to ex-ist for the latter one. The onvergene rate of the GMRES iteration also dependson other multigrid parameters, suh as the number of iteration on the di�erentgrid levels. For test ases without unstable modes the same onvergene level anbe obtained in onsiderably fewer iterations by using the GMRES rather than thestandard solver. The extra memory alloation assoiated with GMRES 10 andGMRES 30 are about 35 and 100 % of that used by the standard �xed-point itera-tion respetively. Both the orretness of the analysis and the relationship betweennumerial instabilities of the linear solver and unsteady phenomena of the baseow have been demonstrated through the linear utter analysis of two realistiturbomahinery test ases.
26
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Figure 1: Mesh for the 2D turbine setion.
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Figure 3: Mah ontours for transoni onditions of the 2D turbine.
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a) b)Figure 7: Pressure amplitude of dominant eigenmodes: a) eigenvetor assoiated withthe outlier 1 and b) eigenvetor assoiated with the eigenvalue 3.
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Figure 8: Blade geometry and surfae mesh of the 3D fan.
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)Figure 13: Pressure amplitude of dominant eigenmode assoiated with the omplex on-jugate pair 1: a) 3D view of the orner between the hub and the sution side lose to theTE and b) blade-to-blade setion lose to the hub. ) Veloity vetors in blade-to-bladesetion lose to the hub. 43


