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Abstract

SBLI (Shock-wave/Boundary-layer Interaction) is a large-scale Computational Fluid Dynamics(CFD) application, de-
veloped over 20 years at the University of Southampton and extensively used within the UK Turbulence Consortium. It
is capable of performing Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) of shock-wave/boundary-
layer interaction problems over highly detailed multi-block structured mesh geometries. SBLI presents major challenges
in data organization and movement that need to be overcome for continued high performance on emerging massively
parallel hardware platforms. In this paper we present research in achieving this goal through the OPS embedded domain-
specific language. OPS targets the domain of multi-block structured mesh applications. It provides an API embedded
in C/C++ and Fortran and makes use of automatic code generation and compilation to produce executables capable
of running on a range of parallel hardware systems. The core functionality of SBLI is captured using a new framework
called OpenSBLI which enables a developer to declare the partial differential equations using Einstein notation and then
automatically carryout discretization and generation of OPS (C/C++) API code. OPS is then used to automatically
generate a wide range of parallel implementations. Using this multi-layered abstractions approach we demonstrate how
new opportunities for further optimizations can be gained, such as fine-tuning the computation intensity and reducing
data movement and apply them automatically. Performance results demonstrate there is no performance loss due to
the high-level development strategy with OPS and OpenSBLI, with performance matching or exceeding the hand-tuned
original code on all CPU nodes tested. The data movement optimizations provide over 3× speedups on CPU nodes, while
GPUs provide 5× speedups over the best performing CPU node. The OPS generated parallel code also demonstrates
excellent scalability on nearly 100K cores on a Cray XC30 (ARCHER at EPCC) and on over 4K GPUs on a CrayXK7
(Titan at ORNL).
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1. Introduction

The exa-scale ambitions of the high performance comput-
ing (HPC) community, including major stakeholders in
government, industry and academia, entail the develop-
ment of parallel systems capable of performing an exa-
FLOP (1018 floating-point operations per second) by the
end of this decade [1, 2]. The underpinning expectation is
that performance improvements of applications could be
maintained at historical rates by exploiting the increasing
levels of parallelism of emerging devices. However, a key
barrier that has become more and more significant is the
difficulty in programming these systems. The hardware
architectures have become complex where a highly skilled
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parallel programming know-how is required to fully ex-
ploit the potential of these devices. The issue has further
been compounded by a rapidly changing hardware design
space with a wide range of parallel architectures such as
traditional x86 type CPUs with multiple cores, many-core
accelerators (GPUs, Intel Xeon Phi), processors with large
vector units, FPGAs, DSP[3] type processors and hetero-
geneous processors. In most cases each architecture could
be programmed using multiple parallel programming mod-
els while at the same time it is not at all clear which archi-
tectural approach is likely to “win” in the long-term. It is
unsustainable for domain scientists to re-write their appli-
cations for each new type of architecture or parallel sys-
tem, as their code-base is typically large, usually compris-
ing several millions of LoC. Furthermore, these code-bases
most usually have taken decades to develop and validate to
produce the required scientific output. Thus, developing
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applications to be “future-proof” have become crucial for
continued scientific delivery. A very closely desired feature
is performance portability [4], where an application can be
efficiently executed on a wide range of HPC architectures
without significant manual modifications.

An emerging solution to future-proof applications and
achieve performance portability is to separate the concerns
of declaring the problem to be solved from its parallel
implementation. The idea is to define the problem at a
higher abstract level using domain specific constructs and
then utilize automated code generation techniques to pro-
duce optimized parallel implementations. The technique
then essentially allows scientists to maintain the “science”
source code without being tied to any platform specific
implementation, acting as a base implementation of their
model. At the same time, parallel computing experts then
have the freedom to derive a parallel implementation us-
ing the best optimizations for a given parallel platform.
Translating the specification to parallel implementations is
carried out by automated code generation techniques such
as source-to-source translation and compilation. While
this concept of abstraction is not new in computer science,
its application to real-world high-performance computing
code development has only been successfully attempted
recently. In particular, domain specific languages (DSLs)
have utilized this development strategy to great effect with
a number of successful frameworks targeting several appli-
cation domains [5, 6, 7, 8, 9, 10, 11, 12].

The underlying goals of this paper are to apply such
high-level abstractions and code development for perfor-
mance portability to large-scale production-grade codes,
providing evidence of their utility in future-proofing HPC
applications for the exa-scale. Here, we focus on the multi-
block structured mesh SBLI (Shock-wave/Boundary-layer
Interaction) application developed at the University of
Southampton [13]. SBLI has been used extensively for
projects within the Aerodynamics and Flight Mechanics
group at Southampton as well as with DLR (The German
Aerospace Center) [14], European Space Agency, Fluid
Gravity Engineering, DSTL, to name a few, and is also
representative of a number of codes within the UK Tur-
bulence Consortium [15] and CCP12 for Computational
Engineering[16]. At the University of Southampton, it
is currently being used for Direct Numerical Simulation
(DNS) or Large Eddy Simulations (LES) of shock-induced
separation bubbles, receptivity and transition to turbu-
lence and transonic flows. Its initial development was
carried out over 20 years ago, but continues to be ac-
tively maintained and optimized [17]. Simulations im-
plemented in SBLI are typically direct numerical simula-
tions [18] where the whole range of both spatial and tem-
poral scales of turbulence is directly resolved by the com-
putational mesh without utilizing any turbulence model.
In this case the number of mesh points increases rapidly
with the Reynolds number.

Recently SBLI was re-engineered [19] to use the
OPS [20] embedded domain specific language (EDSL).

OPS (Oxford Parallel library for Structured mesh solvers)
is aimed at the development of parallel multi-block struc-
tured mesh applications and provides a domain-specific
API embedded in C/C++/Fortran. It uses source-to-
source translation to automatically parallelize applications
written using this API. OPS is being used to parallelize a
number of applications, including hydrodynamics [6], lat-
tice Boltzmann codes [21] and CFD applications [22, 23].
Currently supported parallel platforms include distributed
memory clusters (using MPI), multi-core CPUs includ-
ing Intel’s Xeon Phi many-core processors (using SIMD,
OpenMP, MPI and OpenCL) and GPUs (using CUDA,
OpenCL and OpenACC) including clusters of GPUs.
In this paper we present research that facilitated the

re-engineering of SBLI to utilize OPS and charts the
challenges and findings from converting a production-
grade legacy application to ultimately execute on modern
massively parallel many-core systems at peta-flop scales.
Specifically we make the following contributions:

1. We present the process of re-engineering SBLI to uti-
lize OPS. The core functionality of SBLI is imple-
mented using a new Python based open source frame-
work called OpenSBLI [19], which enables a devel-
oper to define the problem to be solved at a higher
level using Einstein notation. Multiple levels of au-
tomatic code-generation are then used to automati-
cally carryout discretization of the problem and trans-
lating the higher-level “mathematical” description to
a range of platform specific parallelizations. Our
work demonstrates the clear advantages in develop-
ing maintainable, future-proof and performant appli-
cations through this high-level abstractions develop-
ment strategy. To our knowledge this is the first
production-grade multi-block application of its kind
to be developed with a high-level abstraction DSL.

2. The multiple levels of abstraction exposes opportuni-
ties that can be exploited to increase parallelism and
reduce data movement for improved performance. We
present two such optimizations specifically aimed at
improving the computation-communication balance
in the application: (1) re-computing values within
compute kernels without storing the values to tem-
porary variables in RAM and (2) reducing memory
accesses by tiling[24]. We generate code for OpenS-
BLI that includes these optimizations and analyze its
performance on a range of systems.

3. A representative application developed with OpenS-
BLI is benchmarked on single node systems. These
include systems with multi-core CPUs (Intel Broad-
well, Intel Skylake, IBM Power 8) and many-core
processors (NVIDIA P100, and V100 GPUs) paral-
lelized with a range of parallel programming mod-
els including OpenMP, MPI, and CUDA. We com-
pare the performance with that of the original hand-
coded SBLI code while reporting achieved compute
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and bandwidth performance on each system. Results
demonstrate the versatility of OPS to produce highly
performance portable applications.

4. Finally, we present the performance of the OpenSBLI
application (parallelized with OPS) comparing it to
the performance of the original SBLI code on three
large-scale systems, ARCHER at EPCC [25], Titan
at ORNL [26] and Wilkes2 at the University of Cam-
bridge [27] on nearly 100K CPU cores and over 4K
GPUs. The OPS design choices and optimizations are
explored with quantitative insights into their contri-
butions with respect to performance on these systems.

Our work provides evidence into how DSLs and OPS in
particular can be used to develop large-scale applications
for peta-flop scale systems and demonstrates that in the
same environment the performance is on par with the
original. Furthermore, the new code is capable of out-
performing the legacy applications with platform specific
optimizations for modern multi-core and many-core/accel-
erator systems.

The rest of the paper is organized as follows: In section 2
we briefly introduce OPS including its API and code devel-
opment strategy. Section 3 details the re-engineering of the
SBLI application to utilize the OPS EDSL leading to the
creation of the OpenSBLI framework. Section 4 presents
performance from a representative multi-block application
written using OpenSBLI and compares it to the legacy
Fortran-based SBLI. Section 5 gives a brief overview of the
state-of-the art with related work in this area. Section 6
concludes the paper.

2. The OPS Embedded DSL

OPS (Oxford Parallel library for Structured-mesh
solvers) [20] targets the domain of multi-block structured
mesh applications. These applications can be viewed as
computations over an unstructured collection of structured
mesh blocks (see Figure 1). Within a structured mesh
block, implicit connectivity between neighboring mesh el-
ements (such as vertices, cells) are utilized. This is in con-
trast to unstructured meshes that require explicit connec-
tivity between neighboring mesh elements via mappings.
As such, within a structured-mesh block, operations in-
volve looping over a “rectangular” multi-dimensional set
of mesh points using one or more “stencils” to access data.
While each block will be a structured mesh, a key charac-
teristic of multi-block is the connectivity between blocks
via block-halos.

OPS separates the above problem into five abstract
parts. This enables a multi-block structured mesh appli-
cation to be declared at a higher-level by a domain scien-
tist. These parts consists of: (1) structured mesh blocks,
(2) data defined on blocks, (3) stencils defining how data
is accessed, (4) operations over blocks and (5) commu-
nications between blocks. Declaring an application using
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Figure 1: Example 2D multi-block mesh

these high-level domain specific constructs is facilitated by
an API which appears to the developer as functions in a
classical software library. OPS then uses source-to-source
translation techniques to parse the API calls and gener-
ate different parallel implementations. These can then be
linked against the appropriate parallel library enabling ex-
ecution on different hardware platforms. The aim is to
generate highly optimized platform specific code and link
with equally efficient back-end libraries utilizing the best
low-level features of a target architecture. The next sec-
tion briefly illustrates the OPS API and code development
with OPS.

2.1. OPS API

From the domain scientist’s point of view, using OPS is
akin to programming a traditional single-threaded sequen-
tial application, which makes development and testing in-
tuitive. Data and computations are defined at a high level,
making the resulting code easy to read and maintain.
A typical multi-block scenario is illustrated in Figure

1. Here, three 2D blocks exist in affinity to each other.
The data set on the blocks share boundaries, where each
boundary takes the form of a halo (called a block-halo)
over which data is transfered1. Furthermore in this case
one of the blocks has a different orientation with respect
to the other blocks. This multi-block mesh can be defined
using the OPS API2 as follows. We first define the blocks
with its dimensionality and a name (string):

1 ops_block A = ops_decl_block(2,"A");

2 ops_block B = ops_decl_block(2,"B");

3 ops_block C = ops_decl_block(2,"C");

1The block halo is not to be confused with the typical distributed
memory / MPI halos.

2We discuss and use the C/C++ API throughout this paper, but
an equivalent Fortran API also exists
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Next, data sets on each block are declared. Assume for
this example that block A contains two data sets dat1 and
dat2 defined on it, while B and C each contain one data
set (dat3 and dat4 respectively) defined on them. The
two data sets defined on A each have a size of 10× 8 and
a block-halo of depth 1 at the start of their 2nd dimension
(i.e. extending the data set in the negative y direction).
Similarly the data set on block B has a size of 12×4 and a
block-halo of depth 1 at the start of its 2nd dimension (i.e.
extending the data set in the negative y direction). The
data set on block C has a size of 13 × 4 and a block-halo
of depth 1 at the start of its 1st dimension (i.e. extending
the data set in the negative x direction).

4 int halo_neg1[] = {0,-1}; //negative block halo

5 int halo_pos1[] = {0,0}; //positive block halo

6 int size1[] = {10,8};

7 int base1[] = {0,0};

8 double* d1 = ... /* data in previously

9 allocated memory */

10 double* d2 = ... /* data in previously

11 allocated memory */

12 ops_dat dat1 = ops_decl_dat(A,1, size, base,

13 halo_pos1, halo_neg1, d1, "double", "dat1");

14 ops_dat dat2 = ops_decl_dat(A,1, size, base,

15 halo_pos1, halo_neg1, d2, "double", "dat2");

16

17 int halo_neg2[] = {0,-1};

18 int halo_pos2[] = {0,0};

19 int size2[] = {12,4};

20 int base2[] = {0,0};

21 double* d3 = ... /* data in previously

22 allocated memory */

23 ops_dat dat3 = ops_decl_dat(B,1, size, base,

24 halo_pos2, halo_neg2, d3, "double", "dat3");

25

26 int halo_neg3[] = {0,0};

27 int halo_pos3[] = {-1,0};

28 int size3[] = {13,4};

29 int base3[] = {0,0};

30 double* d4 = ... /* data in previously

31 allocated memory */

32 ops_dat dat4 = ops_decl_dat(C,1, size, base,

33 halo_pos3, halo_neg3, d4, "double", "dat4");

ops decl dat(...) declares a dataset on a specific block
with a number of data values per data point (1 in this case
for all three ops dats) and a size, together with parame-
ters declaring the base index of the data set (i.e. the start
index of the actual data), the sizes of the block halos for
the data, the initial data values and strings denoting the
type of the data and name of the ops dat. In this exam-
ple arrays containing the relevant initial data (d1, d2 and
d3 of type double) are used in declaring ops dats. On
the other hand, data can be read from HDF5 files directly
using a slightly modified API call (ops decl dat hdf5).
Alternatively a null pointer can be passed as the data ar-

gument to ops decl dat, which will then be allocated as
an empty data set internally by OPS so that it can be ini-
tialized later within the application. Once a field’s data
is declared via ops decl dat the ownership of the data
is transferred from the user to OPS, where it is free to
re-arrange the memory layout as is optimal for the final
parallelization and execution hardware. Once ownership
is handed to OPS, data may not be accessed directly, but
can only be accessed via the ops dat opaque handles.
The above separation of data in OPS is driven by the

principal assumption that the order in which elemental
operations are applied to individual mesh points during
a computation may not change the results, to within
machine precision (OPS does not enforce bitwise repro-
ducibility). The order-independence enables OPS to paral-
lelize execution using a variety of programming techniques.
However it is not inconceivable to relax this restriction
for implementing some order dependent algorithms within
OPS, with the disadvantage being reduced flexibility for
parallelizations. An example of such an order-dependent
algorithm, currently being explored for implementation
with OPS is the solution to a system of tridiagonal equa-
tions (see OPS repository on GitHub [28] feature/Tridiag-
onal singlenode branch).
Once blocks and data on blocks are declared, the con-

nectivity between blocks can be declared:

34 /* halo from C to A*/

35 int iter_CA[] = {1, 8}; // # elems in each dim

36 // starting index of from-block

37 int base_from[] = {0, 5};

38 // 1 = x-dim, 2 = y-dim

39 int axes_from[] = {1, 2};

40 // starting index of to-block

41 int base_to[] = {0,-1};

42 // -2 = negative y dim, 1 = x-dim

43 int axes_to[] = {-2,1};

44

45 ops_halo halo_CA = ops_decl_halo(dat3, dat1,

46 iter_CA, base_from, base_to,

47 axes_from, axes_to);

48

49 /* halo from A to C*/

50 int iter_AC[] = {8, 1};

51 int base_from[] = {0, 0};

52 int axes_from[] = {1,2};

53 int base_to[] = {-1,5};

54 int axes_to[] = {-2,1};

55 ops_halo halo_AC = ops_decl_halo(dat3, dat1,

56 iterAC, base_from, base_to,

57 axes_from, axes_to);

58

59 /*create a halo group*/

60 ops_halo grp[] = {halo_CA,halo_AC};

61 ops_halo_group G1 = ops_decl_halo_group(2,grp);

Currently, block-halo connectivity declaration is restricted
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to a one-to-one matching between mesh points. In the
above code listing, the connectivity between the blocks
A and C (in Figure 1) are detailed. iter CA gives the
number of elements in the block halos, i.e. the number
of elements that will be copied over from C to A in each
dimension. base from gives the starting index of the el-
ement on the source block that will be copied from and
base to gives the starting index of the element on the
destination block that will be copied to. axes from and
axes to defines the orientation in which the elements will
be copied from and to. For example, in the above code list-
ing, if the x-dimension (represented by 1) is copied to the
y-dimension (represented by 2) and y-dimension copied
to the x-dimension, we define axes from[] = 1, 2 and
axes to[] = -2,1. In the code listing the x-dimension is
copied to the negative direction of the y-dimension, which
is indicated by the - sign. Once the individual block halos
have been defined, they can be combined into a group so
that halo exchanges can be triggered for the whole group.

All the numerically intensive computations can be de-
scribed as operations over the mesh points in each block.
Within an application code, this corresponds to loops over
a given block, accessing data through a stencil, perform-
ing some calculations, then writing back (again through
the stencils) to the data arrays. Consider the following
typical 2D stencil computation:

1 int range[4] = {0, 8, 0, 10}; //iteration range

2

3 for (int j = range[2]; j <range[3]; j++) {

4 for (int i = range[0];i < range[1]; i++) {

5 d2[j][i] = d1[j][i] +

6 d1[j+1][i] + d1[j][i+1] +

7 d1[j-1][i] + d1[j][i-1];

8 }

9 }

An application developer can declare this loop using the
OPS API as follows (lines 78-80), together with the “ele-
mental” kernel function (lines 69-73):

62 /* Stencil declarations */

63 int st0[] = {0,0};

64 ops_stencil S0 = ops_decl_stencil(2,1,st0,"00");

65

66 int st1[] = {0,0, 0,1, 1,0, -1,0, 0,-1};

67 ops_stencil S1 = ops_decl_stencil(2,5,st1,"5P");

68 /* User kernel */

69 void calc(double *a, const double *b) {

70 b[OPS_ACC1(0,0)] = a[OPS_ACC0(0,0)] +

71 a[OPS_ACC0(0,1)] + a[OPS_ACC0(1,0)] +

72 a[OPS_ACC0(0,-1)] + a[OPS_ACC0(-1,0)];

73 }

74

75 /* OPS parallel loop */

76 int range[4] = {0,8,0,10};

77

78 ops_par_loop(calc, A, 2, range,

79 ops_arg_dat(dat2,S0,"double",OPS_WRITE),

80 ops_arg_dat(dat1,S1,"double",OPS_READ));

The elemental function is called a “user kernel” in OPS
terminology to indicate that it represents a computation
specified by the user (i.e. the domain scientist) to apply
to each element (i.e. mesh point). By “outlining” the
user kernel in this fashion, OPS allows the declaration of
the problem to be separated from its parallel implemen-
tation. The ops par loop declares the structured block
to be iterated over, its dimension, the iteration range and
the ops dats involved in the computation. OPS ACC0 and

OPS ACC1 are macros that will be resolved to the relevant
array index to access the data stored in dat2 and dat1

respectively. The explicit declaration of the stencils (lines
63-67) will additionally allow for error checking of the user
code. In this case the stencils consists of a single point
referring to the current element and a 5-point stencil ac-
cessing the current element and its four nearest neighbors.
Further, more complicated stencils can be declared giv-
ing the relative position from the current (0,0) element.
The OPS READ indicates that dat1 will be read only. Simi-
larly, OPS WRITE indicates that dat2 will only be accessed
to write data to it. The actual parallel implementation of
the loop is specific to the parallelization strategy involved.
OPS is free to implement this with any optimizations nec-
essary to obtain maximum performance.

The ops arg dat(..) indicates an argument to the par-
allel loop that refers to an ops dat. A similar function
ops arg gbl() enables users to indicate global reductions.
The related API call of interest concerns the declaration
of global constants (ops decl const(..)). Global con-
stants require special handling across different hardware
platforms such as GPUs. As such, OPS allows users to
indicate such constants at the application level, so that its
implementation is tailored to each platform to gain best
performance.

The final API call of note is the explicit call to com-
municate between data declared over different blocks.
ops halo transfer(halos) triggers the exchange of halos
between the listed datasets.

83 /* halo transfer over halo group G1 */

84 ops_halo_transfer(G1);

As mentioned before, for a given ops par loop, the or-
der in which mesh points are executed in a block may
be arbitrary. However, subsequent parallel loops over the
same block respect data dependencies. For example the
order in which loops over a given block appear in the code
will enforce an execution order that OPS will not violate.
On the other hand, subsequent parallel loops over different
blocks do not have a fixed order of execution and OPS is
free to change this as appropriate. Only halo exchanges
between blocks introduce a data dependency and therefore
a prescribed order of execution between blocks. Further
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details of the OPS API can be found in the user documen-
tation [29], tutorial [30] and in [31, 6].

2.2. Developing Applications with OPS

While input data structures are fixed, based on their de-
scription, OPS can apply transformations to tailor them to
different hardware. OPS uses two fundamental techniques
in combination to utilize different parallel programming
environments and to organize execution and data move-
ment. The first technique is to simply factor out common
operations/functions for a given parallelization and indeed
operations common to multiple parallelizations, and im-
plement them within a classical software library. For ex-
ample, the distributed memory, MPI-based message pass-
ing operations can be viewed as near-identical when used
for passing messages between any type of node, be it a
CPU based node, a GPU node or indeed other many-core
nodes or nodes with hybrid processors. Such functions
can therefore be readily implemented in a classical library,
well optimized for the kind of message passing operations
specifically found in multi-block structured mesh applica-
tions. Similarly, parallel file I/O operations such as using
HDF5 to read in mesh data can also be factored out to a
classical library.

The second technique is code generation or more specif-
ically source-to-source translation, where it is used to pro-
duce specific parallelizations for the ops par loop declara-
tions. Thus for example, a parallel loop to be executed on a
multi-core CPU needs to be a multi-threaded implementa-
tion and OPS needs to generate the code for a nested loop
(based on the dimensionality of the loop) and also gener-
ate code to multi-thread the loop nest with OpenMP. The
same loop, to be executed on a GPU will require the loop
to be implemented for example using CUDA (i.e. OPS will
need to generate CUDA code) including code to instruct
the system to move data to and from the GPU.

Figure 2 gives an overview of the OPS work flow that a
domain scientist will be using for developing a multi-block
structured mesh application. The problem to be solved
should be declared using the OPS API. During develop-
ment, the application with API calls can be tested for
accuracy by including a header file that provides a single-
threaded CPU implementation of the parallel loops and
the halo exchanges and compiling with a C++ compiler
such as GNU’s g++ or Intel’s icpc. No code generation
is required. This sequential developer version allows for
the application’s scientific results to be inspected before
code generation takes place. It also validates the OPS
API calls and provides feedback on any errors, such as
differences between declared stencils and the correspond-
ing user kernels, differences between data types and/or
mismatches between declared access types (OPS READ,

OPS WRITE, OPS RW etc.) and how data is actually ac-
cessed in a kernel. All such feedback is intended to reduce
the complexity of programming and simplify debugging.

Once the application developer is satisfied with the va-
lidity of the results produced by the sequential application,

parallel code can be generated. At this stage, the API calls
in the application are parsed by the OPS source-to-source
translator which will produce parallelization-specific code
(i.e OpenMP, CUDA, OpenCL, etc.) together with func-
tion/procedure calls to the relevant classical library. Thus,
for example, to generate a version of the code that can run
on a cluster of NVIDIA GPUs, OPS will produce CUDA
code interspersed with calls to functions that implement
MPI halo exchanges. The generated code can then be com-
piled using a conventional compiler (e.g. gcc, icc, nvcc)
and linked against the specific classical libraries to gen-
erate the final executable. As mentioned before, there
is the option to read in the mesh data at runtime. The
source-to-source code translator is written in Python and
only needs to recognize OPS API calls; it does not need
to parse the rest of the code. We have deliberately cho-
sen to use Python and a simple source-to-source trans-
lation strategy to significantly simplify the complexity of
the code generation tools and to ensure that the software
technologies on which it is based have long-term support.
The use of Python makes the code generator easily modi-
fiable allowing for it to even be maintained and extended
by third-parties without relying on expertise of the orig-
inal OPS developers. Furthermore, the code generated
through OPS is itself human readable which helps with
maintenance and development of new optimizations.

3. OpenSBLI : Automated Derivation of Finite-
Difference Computations

OPS abstracts the parallel implementation of a multi-block
structured-mesh problem. However, the problem needed
to be declared at a level where loops over blocks and com-
munications/transfers with block-halos are explicitly spec-
ified. As such, the problem needs to be posed as iterations
over mesh points, i.e. loops and each loop needs to be de-
clared as an ops par loop statement, together with code
to set up the blocks, halos and data on blocks using the
OPS API. A further increase in abstraction, one which is
utilized in this research when re-engineering SBLI allows a
scientist to declare a problem as a set of partial differential
equations written in Einstein notation and then automat-
ically generate C/C++ code with OPS API statements
that performs the finite difference approximation to obtain
a solution. The resulting DSL-based modeling framework
called OpenSBLI is the subject of this section.

3.1. Re-Engineering SBLI to OpenSBLI

Legacy versions of SBLI, initially developed at the Uni-
versity of Southampton over 20 years ago comprise static
hand-written Fortran code, parallelized with MPI, that
implements a fourth-order central differencing scheme and
a low-storage, third or fourth-order Runge-Kutta time
stepping routine. It is capable of solving the compress-
ible Navier-Stokes equations coupled with various turbu-
lence models (e.g. Large Eddy Simulation models), a TVD
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Figure 2: The workflow for developing an application with OPS

scheme to capture discontinuities in the flow and diag-
nostic routines. The code-base consists of over 64K LoC
with multiple different versions of the application used for
solving different numerical problems. The core of SBLI is
the evaluation of central finite differences in the governing
equations.

OpenSBLI, was developed from grounds-up as a replace-
ment to SBLI, making use of code generation to produce
the core functionality of the legacy code, but generating
OPS API code which in turn enables us to target multi-
ple hardware and parallel programming models [23]. As
a result, new functionality is introduced where the finite
difference problems that can be solved through OpenSBLI
have become a superset of the legacy SBLI code.

To future-proof numerical methods based on finite dif-
ference formulations, OpenSBLI separates the numerical
solution into two parts: (1) discretization of the govern-
ing equations, applying boundary conditions and advanc-
ing the solution in time, known as the numerical method
(mathematical manipulation), and (2) a computer code
that performs the numerical method. OpenSBLI follows
the principle that these two can be decoupled as the for-
mer is purely mathematical in nature. Thus we can use
symbolic mathematics by creating symbolic computations
for the solution for the first part. The second part then
involves converting the symbolic computations into a code
based on the syntax of the desired programming language
[23]. In our current work, this target language is C/C++
with the OPS API. A different DSL or a programming lan-
guages could also be targeted. Only the code-generation
part of the framework should be rewritten. This capabil-
ity gives rise to what we call “future-proofing numerical
methods” where further decoupling the problem imple-
mentation from its declaration enables greater flexibility
tailored to the context (e.g. numerical method and paral-
lelization method). An additional outcome of this multi-
layered strategy is that we are able to develop solutions

for finite difference problems beyond the original solvers in
the legacy SBLI code-base. As demonstrated in this sec-
tion one can easily add new equations, change the order
of the numerical scheme as well as control the algorithm
with relative ease.
OpenSBLI is written in Python and uses the symbolic

Python library (SymPy) building blocks. The equation ex-
pansion, numerical method discretization, boundary con-
dition implementation and other mathematical manipula-
tions are performed symbolically. To develop an applica-
tion using OpenSBLI, the user describes the problem in a
high-level Python script (which can be viewed as a prob-
lem configuration/setup file). This contains the partial dif-
ferential equations to be solved along with the constituent
relations, numerical schemes, boundary conditions and ini-
tial conditions. For example, consider the solution of the
continuity equation in three dimensions with second or-
der central difference scheme for spatial derivatives. The
equations can be written in Einstein notation as:

∂ρ

∂t
= −∂ρuj

∂xj
(1)

Here, ρ is density, uj is the velocity vector, xj are the
coordinates and t is time. The components of the coor-
dinates and velocity vector in three dimensions are given
by x0, x1, x2 and u0, u1, u2 respectively. The key details of
the high-level Python code to solve this equation is given
below (for the full version see [23]).

1 mass = "Eq(Der(rho,t), - Der(rhou_j,x_j))"

2 ...

3 # Define coordinate direction symbol

4 coordinate = "x"

5 ndim = 3

6 # Create a problem

7 problem = Problem(mass, [], ndim, [],

8 coordinate, metrics=[None], [])
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9 # expand the equations

10 expanded =

11 problem.get_expanded(problem.equations)

12

13 grid = Grid(ndim)

14 # Spatial Scheme

15 spatial_scheme = Central(2)

16 ...

17 # Perform the spatial discretization

18 discretise_s = SpatialDiscretisation(expanded,

19 [], grid, spatial_scheme)

20 ...

21 # Generate the code.

22 code = OPSC(grid, discretise_s, ....)

The continuity equation is written as strings in OpenSBLI
(line 1). This equation is parsed into symbolic form and
expanded depending on the number of dimensions of the
problem (lines 5 – 11). OpenSBLI also facilitates break-
ing up long equations into substitutions. Similarly, other
equations to be solved along with any constituent relations
are expanded. The numerical discretization of Equation 1,
requires a numerical grid (that is instantiated in line 13,
with the number of points and grid spacing represented
symbolically until later replaced with the inputs to a spe-
cific simulation). The discretization of the spatial terms
in the equations, it requires the numerical scheme to be
used. In the current example we are using a second order
central finite-difference scheme. This is set by instantiat-
ing the Central class, with desired order of accuracy as an
argument. To change the order of accuracy, this argument
needs to be changed. The rest of the script remains the
same, showing the ease at which different codes can be gen-
erated. The spatial discretization is performed by calling
the SpatialDiscretisation class with the the expanded
equations, constituent relations, the numerical grid and
the spatial scheme as inputs. This class collects the spa-
tial derivatives in the continuity equation (∂ρuj/∂xj) and
applies the numerical method to create kernels. A kernel
is a collection of equations that are to be evaluated over
a specified range of the domain. A collection of kernels
give the numerical solution. For example, the derivative
∂ρu0/∂x0 results in the following equations added to the
kernel:

wk0 [0, 0, 0] =
1

2dx0
(ρu0[1, 0, 0]− ρu0[−1, 0, 0]) (2)

The array indexing used in OpenSBLI is the relative in-
dexing approach, similar to the stencil indexing of OPS.
The creation of work arrays (e.g. wk0) or thread-/process-
local variables can be controlled from a higher-level as we
shall detail in Section 3.2.1. Once all the kernels are gen-
erated for the spatial derivatives, these are ordered based
on their dependencies and the original derivatives in the
given equations are substituted with their work arrays.
The right hand side (RHS) of the equation is converted

to:

RHS = −(wk0 [0, 0, 0] + wk1 [0, 0, 0] + wk2 [0, 0, 0]) (3)

Similarly, computational kernels are created for tempo-
ral discretization, boundary conditions, initialization, in-
put/output, diagnostics etc. All the manipulations are
symbolic and the framework, even at this stage of auto-
matic generation, has no knowledge of the final program-
ming language.
The final step is to convert all the symbolic kernels into

a specific programming language. As described earlier we
generate a compatible code using the OPS API. The OPSC
class (line 22) of OpenSBLI takes the symbolic kernels
and convert them into OPS C/C++ code. Each kernel
is written as an ops par loop over the range of evaluation
for that particular kernel. During this process, the type of
access for ops dat (read, write or read-write), number for
OPS ACC and stencil access are derived from the equations
defined for that kernel. The stencil accesses are created as
a set to avoid repetitions.
To reduce computationally expensive divisions, the ra-

tional constants, division by constants (like dx0) are eval-
uated to a constant variable at the start of the simulation.
The full list of optimizations performed are given in [22].
For easier debugging the entire algorithm used to generate
the code can be written to a LaTeX file.

3.2. Computation vs. Data Movement Transformations

When a problem is described at a high-level with OpenS-
BLI and OPS, explicitly stating how and what data is
accessed, it exposes opportunities that can be exploited
to increase parallelism and reduce data movement. This
allows the generated code to be tailored to different tar-
get hardware architectures. In this section we present two
such transformations that significantly alters the underly-
ing parallel implementation to achieve higher performance
through balancing computation intensity vs. data move-
ment.

3.2.1. Re-Computation of Values

With OpenSBLI, one can easily change the underlying al-
gorithm to increase or decrease the amount of work arrays
and or computational intensity of the algorithm. In this
paper we generate two versions of the code (1) a baseline
(referred to as BL) code and (2) a code requiring minimal
storage (store none, SN). The BL algorithm follows the
conventional approach frequently used in large-scale finite
difference codes such as the original SBLI code. This con-
tains subroutines or ops par loop’s to evaluate the deriva-
tive of a function and store it to a temporary array. Due
to ease of programming such an implementation, it is typi-
cally used when manually writing a finite-difference solver.
If a function is a multiple of two different variables (exam-
ple rho ∗ u0) then first the function is evaluated in a loop
to a temporary array and then the derivative is evaluated
to another temporary array using the subroutines. The
BL algorithm uses 41 work arrays (same as SBLI) and 66
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derivatives for the convective and viscous terms. Out of
these 18 functions are a combination of two different vari-
ables (these are evaluated to a temporary variable first).
As such the algorithm has low computational intensity,
but has significantly more data movement operations. In
contrast to BL, the SN version does not store any deriva-
tives to work arrays but the derivatives are stored to local
variables and are used to evaluate the right hand side of
the equations. If we consider the discretization of the con-
tinuity equation (Equation 1), the RHS is evaluated as:

var0 =
1

2dx0
(ρu0[1, 0, 0]− ρu0[−1, 0, 0]) (4)

var1 =
1

2dx1
(ρu1[0, 1, 0]− ρu1[0,−1, 0]) (5)

var2 =
1

2dx2
(ρu2[0, 0, 1]− ρu2[0, 0,−1]) (6)

RHS = −(var0 + var1 + var2) (7)

If a derivative has combination of two different variables or
for mixed derivatives (∂u0/∂(x0x1)), the function or the
inner derivative ∂u0/∂x0 is recomputed across the sten-
cil. This increases the computational intensity of the algo-
rithm, while reducing memory accesses. Such an algorithm
is generated by setting the store derivatives attribute
of the grid class to False. In addition to BL and SN,
the ease at which such modifications can be performed is
explained in detail by generating several other variations
of the solver in [22].

3.2.2. Tiling

Most computational stages in OpenSBLI, and generally in
structured-mesh CFD are bound by how fast the archi-
tecture can move data between the processor and main
memory. As described above, one way of addressing this
is via algorithmic optimizations, but it is also possible to
improve data re-use by changing the scheduling of opera-
tions. For example, if two subsequent parallel loops access
some of the same data, this data (due to its size) will not
stay in cache between accesses. Therefore the second loop
has to read it again from RAM. However, by only schedul-
ing some of the iterations in the first loop, accessing just
a subset of the entire dataset, and then, accounting for
dependencies, scheduling the appropriate iterations in the
second loop, we can exploit data re-use between these two
loops.

This implements a type of cross-loop scheduling, which
in this use case we call cache-blocking tiling. Program-
ming such an optimization manually is tedious and virtu-
ally impossible for large-scale codes. Traditional compilers
and Polyhedral compilers [32, 33, 34, 35, 36, 37, 38] have
been targeting this problem for many years, yet they are
not applicable to problems of this size. Therefore in OPS
we have implemented a feature that determines the cross-
loop dependencies and constructs execution schedules at
runtime [24]. On top of achieving better cache locality,
the algorithm also improves distributed-memory commu-
nications; by determining inter-process data dependencies

for a number of computational steps ahead of time, it can
group MPI messages together and exchange more data but
less frequently. Additionally, it can avoid communicating
halos for working arrays altogether, by redundantly com-
puting around the process boundaries.
Tiling in OPS relies on delaying the execution of par-

allel loops, and queuing up a number of them to analyze
together. Execution has to be triggered when some data
has to be returned to user space. In OpenSBLI we can
analyze a large number of loops together, because data is
only returned to the user at the end of the simulation. Af-
ter some experimentation we found that the optimum is
to analyze and tile over all the loops in a single time step.

4. Performance

Having re-engineered SBLI to OpenSBLI, we validated the
results from the new code to ascertain whether the correct
scientific output is produced. Validation consisted of run-
ning OpenSBLI on known problems, comparing its results
to the legacy SBLI application solving the same problem.
The correctness of different algorithms on CPUs were pre-
viously reported in [22]. In the present work, the min,
max difference between the algorithms for all the conser-
vative variables were found to be less than 10−12 on each
architecture, and the difference between the runs on CPU,
and GPU are found to be less than 10−12 for the number
of iterations and the optimization options considered here.
After establishing accuracy, the remaining open ques-

tion is whether the time and effort spent in re-engineering
SBLI to utilize OPS, producing OpenSBLI was justified in
terms of performance. The key questions are (1) whether
the utilization of OPS through OpenSBLI affected (im-
proved/degraded) the performance compared to SBLI (2)
what new capabilities can be enabled through OPS that
improve performance, (3) whether further performance
gains are achievable with modern multi-core/many-core
hardware, (4) what quantitative and qualitative perfor-
mance gains result in computation vs. data movement
transformations on different parallel platforms and (5)
whether OpenSBLI scales well, considering large-scale sys-
tems (with node architectures of pre-exascale and upcom-
ing exascale designs) and problem sizes of interest in the
target scientific domains.
We begin by determining whether using a high-level ap-

proach such as OpenSBLI and OPS is in any way detri-
mental to performance when compared to the hand-coded
original; it is obviously important to be able to perform
a like-for-like comparison and demonstrate that the OPS
version can indeed match the performance of the original
under identical circumstances. We first explore the single
node performance in Section 4.1 followed by performance
on a number of large-scale distributed memory systems in
Section 4.2.
As mentioned before, a number of known problems were

used for validating OpenSBLI [23, 39, 40]. One of them
is the 3D Taylor-Green Vortex problem [41, 42, 43], which
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Table 1: Single node Benchmark systems specifications

System Kos Scyrus Saffron
Node Intel Xeon Intel Xeon POWER 8E
Architecture E5-2660 v4 @ 2.0GHz (Broadwell) Silver 4116 CPU @ 2.10GHz 8247-42L @ 2.06 GHz

+ 1 × NVIDIA Tesla V100 GPU (Skylake)
+ 3 × NVIDIA Tesla P100 GPUs

Procs × cores 2×14 (2 SMT/core) 2×12 (2 SMT/core) 2×10 (8 SMT/core)
Memory 132 GB 96 GB 268 GB

+ 16GB (P100) and 16GB (V100)
O/S Debian 4.9.51 Debian 4.9.82 Ubuntu 16.04 LTS

Table 2: Compilers and Compiler Flags

Compiler Version Compiler Flags
Intel Compilers 18.0.2 Broadwell and Skylake : -O3 -fno-alias -finline -inline-forceinline

icc, icpc and ifort -fp-model strict -fp-model source -prec-div -prec-sqrt -xHost -parallel

nvcc CUDA 9.1.85 -O3 -restrict --fmad false

P100 : -gencode arch=compute 60,code=sm 60

V100 : -gencode arch=compute 70,code=sm 70

IBM XL C/C++ V13.1.7 (Beta 2) -O5 -qmaxmem=-1 -qnoxlcompatmacros -qarch=pwr8 -qtune=pwr8

xlc, xlc++ and xlf for Linux -qhot -qxflag=nrcptpo -qinline=level=10 -Wx,-nvvm-compile-options=-ftz=1 -Wx,

-nvvm-compile-options=-prec-div=0 -Wx,-nvvm-compile-options=-prec-sqrt=0

Figure 3: Non-dimensional vorticity iso-contours from the

Taylor-Green vortex problem (2563 mesh). Top left to bottom

right: non-dimensional time t = 0, 2.5, 10, 20. [23]

we use in this section to benchmark and explore perfor-
mance. This problem considers the evolution of a vortex
system, starting from the initial stages of roll-up, stretch-
ing and vortex-vortex interaction, all the way to vortex
break-down and transition to turbulence. No turbulence
is artificially induced/generated, such that all the energy
is dissipated by the small-scale structures with the com-
pressible fluid eventually coming to rest. The numerical
method must be capable of accurately representing each
of these physical processes/stages [23]. Figure 3 presents a
visualization of the z-component of vorticity in the Taylor-

Green vortex test case with a 2563 mesh points, at various
non-dimensional times.

4.1. Single Node Performance

Table 1 provides brief specifications of the single node sys-
tems used in our initial performance analysis. The first
system, Kos is a single node system consisting of two
Intel Xeon Broadwell processors together with multiple
NVIDIA GPUs, 1 × Tesla V100 and 3 × Tesla P100.
Each Intel processor consists of 14 cores each configured
with 2 hyper-threads (SMT). The second system, Scyrus
consists of two Intel Skylake processors, each consisting of
12 cores. Again, each core is configured to have 2 hyper-
threads. The final system, Saffron, is an IBM POWER8
processor system. It consists of two POWER8 processors,
each with 10 cores. Each core is configured to run up to
8 hyper-threads. The compilers and flags used to build
SBLI and OpenSBLI applications and OPS are detailed
in Table 2. We believe these three single node systems,
including the GPUs in them, adequately represent cur-
rent multi-core and many-core node architectures used in
large-scale machines. Performance on these systems pro-
vides initial insights into the key questions posed above.
For the remainder of the paper we focus on the perfor-

mance of the main time-marching loop without consider-
ing time spent in file I/O. In production runs it is com-
mon to use file I/O for regular checkpointing. A previous
paper [44] with OPS demonstrates how high-level abstrac-
tions improves the performance of checkpointing. Of par-
ticular note is one of the checkpointing modes in OPS that
enables a separate thread of execution to save data to disk
as a non-blocking call that executes asynchronously. As
such there is minimal impact to performance with check-
pointing. In the experiments for this paper we do not do
any checkpointing as we only focus on time to solution.

4.1.1. Runtime Performance

Figure 4 (a) and (b) presents the runtime (100 iterations)
of the baseline Taylor-Green Vortex application, BL and
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Figure 5: Taylor-Green Vortex, Single node runtimes (seconds) - 2603 Mesh

the SN version of the application solving a mesh of size
1923 on the single node benchmark systems. Recall that
the SN (Store None) version of the code, has a higher
computational intensity, where instead of evaluating the
derivatives and storing them on to work arrays, the OpenS-
BLI code generation process directly replaces the deriva-
tives by their respective finite difference formulas such that
they are recomputed every time. The figures present all
parallel versions generated through OPS that can execute
on each of the benchmark systems in Table 1. For com-
parison, the first three bars of the graph indicate the run-
time of the same problem (and problem size) solved by the
original SBLI application on the Skylake, Broadwell and
POWER8 nodes respectively. MPI distributed memory
parallelism is the only parallel version supported by SBLI.

We see that the baseline Taylor-Green Vortex version,
BL implemented with OpenSBLI matches the same ap-
plication implemented using the legacy SBLI code for this
problem size (see Figure 4(a)). The MPI parallel version of
BL is actually 30% faster on the Skylake and 15% faster on
the Broadwell systems than its SBLI counterpart. On the
IBM POWER8, BL gives almost the same runtime as SBLI
(less than 2% difference). This result gives us an initial
indication that the high-level abstraction and code gener-
ation has not resulted in any degradation in performance
compared to the original hand-tuned version. Other par-
allelizations on the Broadwell node give further perfor-
mance improvements (4× MPI+12× OMP+Tiling giving
about 30% speedups), while the MPI only version of BL
gives the best performance on the Skylake and POWER8.

Considering the performance of BL across systems, the
best CPU performance is given by the POWER8 system
(running 80× MPI procs) with nearly 2× speedup com-
pared to the two-socket Skylake system (24× MPI) and
over 2× speedup compared to the two-socket Broadwell
system (4× MPI+14× OMP+Tiled). However, the best
overall performance is achieved on the single GPUs using
CUDA, with close to 4× speedup over the best CPU per-
formance (POWER8, 80× MPI) on the V100 GPU. The
V100’s speedup over the original SBLI code is also about
4×.
Considering the SN version of the application (Fig-

ure 4(b)), we see close to 3× speedup over SBLI on Skylake
(48× MPI), 3.3× speedup on Broadwell (56× MPI) and
2× speedup on POWER8 (80× MPI). The MPI-only SN
version also provides over 2× speedup over the MPI-only
BL version on the Skylake node and nearly 3× over the
MPI only BL version on the Broadwell node. Similarly the
SN MPI runtime given by the POWER8 is just over 2×
faster than its BL MPI runtime. As such it is evident that
optimizing for reducing memory accesses / communica-
tions have played a considerable role in improving the per-
formance of the application. The performance of the SN
version across systems show that now there are less perfor-
mance differences between CPU systems. GPUs still give
the best runtimes with over 5× speedup given by SN on
the V100 GPU over the best performing CPU (POWER8,
80× MPI).

Results from benchmarking the same problem on a
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Figure 6: Single node energy consumption (kJ)

larger problem size of 2603 is given in Figure 5 (a) and (b).
In this case, the problem size was chosen such that it max-
imizes the global memory used on both the P100 and V100
GPUs. Any larger mesh, we found could not be solved by
a single GPU with OpenSBLI-BL (the SN version uses less
memory). Again we see most of the performance trends
from the smaller problem size occurring for the larger prob-
lem size. The performance differences between SBLI and
the MPI versions of BL on Skylake and Broadwell are now
28% and 18% respectively. On the POWER8, BL performs
with a 8% speedup over SBLI. The best BL version on the
CPU systems was again on the POWER8 (80× MPI). We
also see that there is again a notable benefit of tiling on
the Broadwell system with about 30% improvement over
MPI+OpenMP. Some minor improvements with tiling is
also observable on Skylake. However, as before the best
overall runtime is given by the V100 GPU. This is close to
4× speedup over BL and 4.2× over SBLI on the POWER8
system (80× MPI).

Considering the SN version on the 2603 problem size in
Figure 5(b), we see similar performance trends as before.
The V100 GPU, is now giving over 5× speedup compared
to the best runtime on a CPU system, in this case given
by the POWER8 (80× MPI) node.

4.1.2. Power and Energy Consumption

While the runtime performance shows GPUs giving signif-
icant speedups over CPUs, it is always difficult to judge
performance solely on time to solution. This is particularly
true due to the fact that in order to run applications on a
GPU, it currently needs to be hosted on a system with a
CPU. All the GPU systems we present results for has this
characteristic. A fairer cost metric could be the energy
consumption of a simulation depending on the hardware.
Such a measure could be obtained by estimating the power
consumed by the single node system, multiplying it by the
runtime of the simulation on that system.

We use the thermal design power (TDP) to estimate
the power consumed by each processor. A single Intel
Xeon Broadwell CPU has a TDP of 105 Watts[45]. The
two socket system used in these experiments will there-
fore consume upto 210 Watts. We triple this value (630

Watts) to account for the power draw of the whole node,
due to memory, disk, networking etc. A similar figure
of 510 Watts is calculated for the dual socket Skylake sys-
tem [46] and 1140 Watts for the dual socket POWER8 [47]
system. Both P100 and V100 GPUs each has a TDP of
250 Watts [48, 49]. Given that the runtime figures only
consider 1 GPU executing the application we assume that
the power consumption will be equivalent to the TDP of
a single GPU plus three times the TDP of the dual socket
Intel Broadwell CPUs that hosts it. This gives a total
of 880 Watts per GPU. These estimates appear to be ac-
ceptable compared to the single-node power consumption
figures of the three cluster systems we use in Section 4.2.

Figure 6 details the energy consumed during the best
runtimes on each architecture for SBLI and OpenSBLI’s
BL and SN versions. Energy consumption for both prob-
lem sizes give similar CPU vs GPU trends. While both
the P100 and V100 has a larger power-draw than the Intel
CPUs, due to the higher runtime speedups the GPUs ex-
hibit superior energy efficiency per execution. For the best
performing SN version, on the 1923 problem, the P100 and
V100 are over 3× to just over 7×more energy efficient than
any of the CPU runs. A similar energy efficiency speedup
can be observed for the 2603 problem. The key insight, as
we have previously observed is that for the above OpenS-
BLI application versions [50] and similar mesh based tra-
ditional HPC applications [5] the most energy efficient ex-
ecutions are almost always achieved by the systems giving
the fastest runtime.

4.1.3. Computation and Bandwidth Performance

Investigating the achieved computation performance, in
terms of achieved Flops/s and the achieved bandwidth on
each system provides further insights into the behavior
of the application, especially given the significant perfor-
mance difference of the BL and SN versions, and given the
memory access optimizations in SN. Table 3 details these
achieved performance results for the most time consuming
kernels in the BL and SN versions of the applications.

Seven kernels are selected for BL of which three
(001, 022, 037) are for the evaluation of multiple functions
as described in Section 3.2.1, one each for the evaluation of
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Table 3: Achieved Application Bandwidth (BW) GB/s

BL 1923

Krn. V100 P100 SklyLake Broadwell POWER8
CP BW T CP BW T CP BW T CP BW T CP BW T

GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec.
001 44.85 725.24 0.29 28.90 462.61 0.45 5.11 84.24 2.55 7.06 128.48 1.84 11.29 186.00 1.15
015 123.21 461.52 0.22 71.33 266.93 0.38 32.09 105.60 0.99 49.12 176.64 0.64 77.58 252.80 0.41
022 38.25 620.94 0.34 26.01 418.15 0.50 5.24 85.44 2.48 10.78 188.68 1.21 11.34 181.20 1.15
037 38.25 620.49 0.34 26.01 417.06 0.50 4.96 79.92 2.62 10.55 181.08 1.23 11.77 188.00 1.10
052 138.19 715.39 1.26 89.29 463.58 1.95 19.77 79.20 11.39 19.43 83.04 11.58 52.07 206.40 4.32
081 227.52 719.40 0.84 145.89 459.99 1.31 46.03 102.72 5.85 48.68 115.84 5.53 96.09 212.40 2.80
091 66.73 681.24 0.35 45.80 463.14 0.51 11.89 88.56 2.68 12.57 99.56 2.53 29.53 217.80 1.08

SN 1923

CP BW T CP BW T CP BW T CP BW T CP BW T
GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec.

00 479.48 504.03 0.33 247.23 264.16 0.64 35.07 93.60 1.89 35.62 93.52 1.87 86.61 232.00 0.77
01 1076.41 136.86 1.73 750.88 95.78 2.48 120.95 12.96 17.99 134.69 15.00 16.16 231.53 24.80 9.40
02 64.88 660.55 0.36 45.80 464.65 0.51 11.74 87.36 2.71 16.20 123.22 1.97 36.65 270.40 0.87
03 70.78 729.83 0.33 46.71 470.74 0.50 16.04 119.52 1.99 30.96 232.28 1.03 38.72 285.60 0.82

BL 2603

CP BW T CP BW T CP BW T CP BW T CP BW T
GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec.

001 47.49 757.31 0.68 29.10 469.05 1.11 7.20 131.04 4.46 6.64 113.78 4.84 11.02 181.60 2.91
015 134.62 496.59 0.50 78.27 286.67 0.86 46.83 168.48 1.65 50.23 169.96 1.54 72.73 244.80 1.06
022 37.12 596.21 0.87 24.28 391.11 1.33 8.85 156.64 3.63 14.85 246.48 2.16 12.53 205.60 2.56
037 37.12 597.47 0.87 24.47 392.67 1.32 10.01 174.40 3.21 13.72 227.62 2.34 11.47 188.00 2.80
052 138.14 715.81 3.13 89.70 464.66 4.82 23.86 101.52 23.42 28.11 117.18 19.89 52.30 209.60 10.69
081 229.27 720.49 2.07 146.03 459.23 3.25 44.62 105.76 14.98 79.72 184.56 8.39 94.60 211.20 7.07
091 65.91 670.37 0.88 46.03 466.95 1.26 14.51 114.96 5.45 11.96 91.80 6.61 26.24 195.20 3.01

SN 2603

CP BW T CP BW T CP BW T CP BW T CP BW T
GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec. GF/s GB/s sec.

00 510.28 531.69 0.77 274.76 287.97 1.43 43.21 112.50 3.77 34.36 89.34 4.74 84.93 225.60 1.92
01 1063.04 135.55 4.35 713.62 90.98 6.48 100.63 11.14 53.71 149.19 16.52 36.23 246.75 27.20 21.90
02 65.91 668.40 0.88 44.96 456.26 1.29 22.25 168.26 3.55 13.75 104.04 5.75 30.99 231.20 2.55
03 73.42 746.55 0.79 46.03 467.39 1.26 31.77 238.14 2.49 32.47 243.18 2.44 29.15 217.60 2.71

RHS of convective and viscous terms (052, 081), time ad-
vancement (091) and one for the evaluation of constituent
relation (015). As there are only four kernels in the SN
version all of these are selected. These represent evalu-
ation of constituent relations (00), RHS of the equations
(01), temporal advancement sub stage (02) and time ad-
vancement (03).

To measure the computation performance, Intel’s Ad-
visor 2018 (update 2) profiler was used on the Intel CPU
systems. On the GPUs we used NVIDIA’s nvprof profiler.
Both profilers provided a relatively direct way to obtain
the total number of floating-point operations executed in
each kernel of interest for the parallelizations tested. On
the IBM POWER 8 system, however, a suitable profiler
was not available. As such we estimated the number of
floating-point operations based on the Intel CPU figure.

The most time-consuming kernel in the BL version of
the code (052) achieves approximately 20 GFlops/sec on
both Broadwell and Skylake for the 1923 problem. This
is only about 4% and 3.2% of the DGEMM peak of
the two processors on each system (623.19 GFlops/sec
and 482.53 GFlops/sec respectively). For the two socket
POWER8 the most time consuming kernel achieved about
52 GFlops/s which is about 10% of peak (501 GFlops [51]).

Such a low computation performance achieved of the peak
is more prominent on the P100 and V100 GPUs with
only less than 3% achieved (out of 4.7TFlops/sec and
7TFlops/sec respectively) on either of the GPUs for the
most time consuming kernel. Moving to the SN version, we
see a considerable improvement of the achieved computa-
tion performance of the most time consuming kernel (01).
On the Intel Broadwell and Skylake systems, 25% and 21%
of the peak is achieved respectively, and on the POWER8
46% of the peak is reached. The achieved computation per-
formance is also improved on the V100 and P100 GPUs,
both at about 15% of the peak. A similar trend can be seen
for the 2603 problem size for both BL and SL. Considering
all the kernels, we see that the SN version achieves over
3.5× the average achieved GFlops/s rate for BL (i.e. total
floating-point operations / sum of time spent in the most
time consuming kernels) on all the CPU systems. On both
GPUs, SN gives over 6× the computation performance vs
BL.
To compare with each system’s peak achievable band-

width performance we establish a simple roof-line model by
benchmarking all the sockets of a node for the CPUs using
the STREAM[52] benchmark. For the GPUs we use the
BabelSTREAM [53] benchmark on a single GPU. Figure 7

13



0

100

200

300

400

500

600

700

800

900

1000

1K 4K 16K 64K 256K 1M 4M 16M 64M

G
B

/s

V100

P100

SkyLake

Broadwell

POWER8

STREAM Array Size

Figure 7: STREAM Bandwidth performance of node systems

plots the achieved BW for Triad, (1K to 64M number of
elements in the benchmark array), repeated 100000 times.
The roof-line model can be compared with the achieved
bandwidth of the most time consuming kernels in the BL
and SN versions of the application as detailed in Table 3.
The kernels and their bandwidths here have been selected
from the best performing parallel version of the applica-
tions (whose runtimes are indicated in Figures 4 and 5).
Bandwidth figures shown for each kernel are rough esti-
mates computed by the automated profiler in OPS, which
uses the iteration range and the type of access (R/W) to
data. As such, the calculation ignores data reuse within a
single loop nest due to multi-point stencils which stay in
cache.

Firstly, it is noted that for each problem size the
achieved bandwidth of each kernel on each system is, in
the majority of cases approximately similar. The CPU
systems, Skylake, Broadwell and POWER8, has achieved
a STREAM bandwidth to DDR4 of about 112 GB/s,
128GB/s and 140 GB/s respectively. Any higher band-
width is bandwidth to the last level cache. It can be seen
that, on the CPU systems, the most time-consuming kernel
in the BL version (052)of the code utilizes over half of the
DDR4 bandwidth. Other top kernels have an even higher
utilization. It is, therefore clear that the performance lim-
iting factor of BL is memory bandwidth. In contrast, for
SN, on all CPU systems, the most time consuming kernel
has less than 15% of DDR4 bandwidth utilization. On the
GPUs, the kernels utilize over half of the BW, for both
TGV and SN, for both problem sizes. As such we can
conclude that SN is still bandwidth limited on the GPUs.

4.2. Large-scale Performance

Next, we explore the scaling performance of the applica-
tion. Table 4 gives brief details of the three large-scale
systems we used for benchmarking. The first system,
ARCHER [25] based at the University of Edinburgh, is
a Cray XC30 system consisting of a CPU only node archi-
tecture. ARCHER is based on the Intel Ivy Bridge pro-
cessors, each node consisting of two processors, each with
12 cores. The other two systems are GPU clusters, Titan
at ORNL [26] and Wilkes2 [27] at the University of Cam-
bridge. Titan, a Cray XK7 system, consists of an older
generation of NVIDIA GPUs, the K20x, one GPU per
node while Wilkes2 consists of four NVIDIA P100 GPUs
per node. On both the Cray systems we used the Cray

compilers to compile the application and the OPS library.
On Wilkes2, we used the Intel 17.0.4 compiler suite. We
found that these compilers (and the flags used) gave us the
best performance on the respective systems.

4.2.1. Runtime and Scaling Performance

Figure 8 reports the runtime (again for 100 iterations) of
the Taylor-Green Vortex problem’s SBLI, and OpenSBLI
versions on ARCHER. The x-axis represents the number
of nodes on each system, where an ARCHER node has
24 cores. The run-times (on the y-axis) are the mini-
mum obtained from about 5 runs for each node count.
The standard deviation in run times was significantly less
than 10%. Figure 8(a) presents strong scaling, where a
mesh size of 3843 is solved at increasing machine size.
Figure 8(b) presents weak-scaling, where a mesh size of
1923 per node is solved. In this case the problem size in-
creases with the machine size. The largest machine size we
tested the application is on 4K nodes (98304 cores), which
is 4/5ths of the total machine size.
All versions of the application demonstrate good strong

scaling (see Figure 8(a)) on ARCHER, with near linear
scaling up to 512 nodes. SN’s MPI+OMP with tiling ver-
sion is approximately two times faster than SBLI up till
this node count. However, it appears that SBLI gets a per-
formance boost due to the smaller mesh size solved by a
single node possibly fitting in cache, from 1024 nodes. At
larger machine scale SN’s non-tiled MPI+OMP paralleiza-
tion gives better scalability. It appears that the overhead
of tiling may outweigh the performance benefits of it at
this problem size per node. It is on weak-scaling, we see
the significant benefits of tiling. In the weak scaling graph,
Figure 8(b), the best runtime at increasing scale is given
by SN’s MPI+OMP with tiling (nearly 50% faster over
MPI+OMP without tiling). It is nearly 2.75× faster than
SBLI, and 2× faster than the best BL runtime given by
MPI+OMP with tiling. Additionally, there appears to be
excellent weak scaling where the runtime remains nearly
the same at larger and larger machine size on ARCHER.

Next, Figure 9 compares the best scaling runtime on
ARCHER with that of the GPU clusters. The best run-
time on ARCHER is given by SN, MPI+OMP for strong
scaling and MPI+OMP Tiled for weak scaling. The par-
allel version on the GPU clusters use MPI+CUDA. For
comparison we also indicate the runtime from SBLI on
ARCHER. The x-axis represents the number of nodes on
ARCHER and the number of GPUs in the other two sys-
tems. In other words the comparison is between 1 GPU
and 1 ARCHER (2 CPUs, i.e. 24 cores) node. We believe
that this provides a fairer comparison, given that there
are 4 GPUs per Wilkes2 node. The single node power
draw as computed in Section 4.2.2 gives further justifica-
tion, where a Wilkes2 node has approximately four times
the power draw of a Titan node. The largest machine size
used is 4k nodes (i.e. 4K GPUs) on Titan. The equivalent
number of AMD Opteron cores is 61440.
Strong scaling (Figure 9(a)) again uses a total problem
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Table 4: Large-scale systems specifications

System ARCHER (Cray XC30) Titan (Cray XK7) Wilkes2 (P100 Cluster)
Node Architecture Intel Xeon E5-2697 v2 AMD Opteron Intel Xeon E5-2680 v4

@ 2.7 GHz (Ivy Bridge) 6274 @ 2.2 GHz (Interlagos) @ 2.40GHz
+ NVIDIA Tessla K20x GPU + 4 × NVIDIA Tessla P100 GPUs

Procs × cores per node 2 × 12 1 × 16 + 1 GPU 2 × 12 + 4 × GPUs
Memory/Node 64 GB 32 GB + 6 GB (K20x) 96GB + 16GB/P100 GPU
Total Nodes(cores), GPUs 4920 Nodes (118,080) 18688 Nodes, 18688 GPUs 90 Nodes, 360 GPUs
Interconnect Cray Aries Cray Gemini Mellanox EDR Infiniband
OS CLE 3.0.101 CLE 3.0.101 Scientific Linux release 7.5 (Nitrogen)
Compilers PrgEnv-cray/5.2.82 PrgEnv-cray/5.2.82, CUDA 9.1 Intel Compilers 17.0.4, CUDA 9.0
Compiler flags -O3 -O3 -O3 -fno-alias -finline

-inline-forceinline -xHost -parallel
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Figure 8: Scaling on ARCHER
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Figure 9: Scaling on Titan and Wilkes2 vs ARCHER

size of 3843 solved at increasing machine size. At small
machine sizes (1 to 64 GPUs or nodes), Titan gives about
4× to 2× the speedup than ARCHER, while Wilkes2 gives
speedups ranging from 8× to 4×. However, ARCHER be-
gins to narrow down this speedup from 128 nodes, overtak-
ing the Titan runtime at 1024 nodes and later at 4K nodes
giving a speedup of 2× over Titan. However, this strong-
scaling behavior is completely expected, as each GPU, at
larger scales are solving a smaller and smaller problem
size. This results in (1) each GPU not having enough par-
allelism to be exploited within a partition assigned to it
and (2) each partition not providing sufficient computation
to hide kernel launch and communication latencies (PCIe
and network latency). However, the weak-scaling results
(Figure 9(b)) demonstrate the significant benefits of the
GPU clusters where speedups ranging from 2.3× to 1.4×
on Titan and over 4× on Wilkes2 compared to ARCHER
can be seen at scale.

4.2.2. Power and Energy Consumption

Similar to the energy consumption estimates carried out
in Section 4.1.2 we can estimate the energy consumed per
execution on each of the large-scale clusters. The total
power draw of a single node of ARCHER is 672 Watts.
This was estimated from their Top500 submission [54] for
the whole system (3306kW), divided by the total number
of nodes (4920). A similar estimate for a Titan node is 439
Watts (8209kW/18688) [55]. A single node in the Wilkes2
system was estimated to have maximum Wattage of 1500
based on empirical measurements by the Wilkes2 cluster
administrators, consisting of hardware described in [56].
These enables us to calculate the energy consumption due
to the execution of the applications at scale, as detailed
in Figure 10 for both strong and weak scaling. Note that
these graphs plots the nodes for Titan and ARCHER on
the x-axis while plotting quarter nodes for Wilkes2, given
that a Wilkes2 node consumes approximately four times
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Figure 10: Energy consumption at scale on Titan, Wilkes2 and ARCHER
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Figure 11: SN - Computation vs Communication times at scale on Titan, Wilkes2 and ARCHER

the power consumption of a Titan node. Again we see that
best runtimes produce the most energy efficient executions.
However an exception to this is Titan vs Wilkes2 where
the faster Wilkes2 runs were not fast enough to overtake
Titan’s superior energy-performance.

4.2.3. Computation and Communications Performance

Breaking down the total runtime to their computation and
communication time components provides further insights
into the behavior of the application at scale. Figure 11
details the time spent in computing and time spent in com-
municating (including PCIe and MPI halo exchange time)
during the best performing runs in Figure 9. The break-
down for strong scaling in Figure 11(a) shows how, as
expected, the computation per node (or GPU) decrease
at higher scale near-linearly. However, communication
times does not reduce at the same rate. This behavior
is more prominent on the GPU clusters, indicating that
there is an overhead that does not reduce for communi-
cating smaller halos at scale. As such we conclude that
this overhead is due to message communication latency
between GPUs across nodes and over PCIe. We see com-
parable behavior for weak scaling in Figure 11(b) where
now the computation time, as expected remains largely
constant. The communication time also remains constant
for most of the runs, but tend to gradually increase at
higher scales. This is more prominently observable on Ti-
tan. This evidence suggest that further optimizations to
the MPI+CUDA code generated by OPS should be ex-
plored to improve performance.

5. Related Work

The use of domain specific languages, and similar high-
level abstractions for future-proofing applications and to
achieve performance portability has been steadily gaining
wider acceptance in HPC.While the concept of abstraction
is not new in Computer Science, its application to real-
world high-performance computing code development has
only been successfully attempted recently.

OP2 [57, 5], also an embedded DSL in C/C++ or For-
tran, is one of the earliest high-level abstraction frame-
works to demonstrate the use of this development strat-
egy for production applications. OP2 targets the domain
of unstructured mesh applications. In [58], OP2 was used
to re-engineer a production CFD application from Rolls-
Royce demonstrating higher scalability and speedups on
large-scale multi-core many core systems. Related frame-
works for unstructured mesh applications include Fen-
iCS [9], Firedrake [8, 10] and PyFR [11]. All three of these
provides a higher-level notation for declaring a particular
class of problems, whereas OpenSBLI is more general in
that it can be used for any equations to be solved using
explicit finite differences. A similar high-level mathemati-
cal notation is provided by Devito [12], for the solution of
finite difference problems, particularly arising in seismic
inversion problems. Devito, is perhaps the most similar
framework to OpenSBLI in terms of the use of symbolic
Python. While the numerical methods adopted are simi-
lar, OpenSBLI has other advantages of Einstein expansion,
more boundary conditions and changing the back-end pro-
gramming language. Additionally Devito is currently only
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able to utilize CPU systems (including Intel XeonPhis) for
parallel execution.

There also exists several high-level DSL-type frame-
works used in weather modeling applications such as
STELLA [59] (and its successor GridTools) and PSy-
clone [60]. While the parallel motif targeted by these
frameworks are the same as OPS (i.e. structured-mesh
applications), they are specialized for weather simulations.
However they differ from OpenSBLI in how the problem
declaration is created using a high-level mathematical no-
tation. They also do not provide the same range of target
parallelizations as OPS does (e.g PSyclone currently uses
only OpenACC for executing on GPUs) and their combi-
nations with distributed memory execution.

Kokkos [7] and RAJA [61] relies on C++ templates to
provide a thin portability layer for parallel loops. As such
the abstraction is not as high as OPS and no code genera-
tion is carried out. Through template meta-programming,
Kokkos and RAJA allow to link to different back-end
implementations, specifically OpenMP, CUDA and their
combinations with MPI. Given the abstraction at paral-
lel loop level, they are able to handle a wider range of
domains.

6. Conclusions

In this paper we focused on the re-engineering of the multi-
block structured mesh SBLI application developed at the
University of Southampton to utilize the OPS embedded
domain specific language. The paper charts the steps and
challenges in converting a production-grade legacy appli-
cation to execute on modern massively parallel many-core
systems.

The core functionality of the legacy SBLI application
written in Fortran was implemented in a new framework
called OpenSBLI. OpenSBLI allows finite-difference prob-
lems to be declared using Einstein notation with symbolic
Python and then automatically carryout discretization and
generation of OPS (C/C++) API code. OPS is then able
to automatically generate a wide range of parallel im-
plementations that can be executed on multi-core CPUs,
many-core GPUs using a range of programming models
such as SIMD, OpenMP, CUDA, OpenCL and OpenACC
and their combinations with MPI.

We also demonstrated how the high-level abstractions
development strategy opens up opportunities for further
optimizations, particularly data movement or communica-
tion avoidance. OpenSBLI is able to automatically gen-
erate OPS loops that has different computation/commu-
nication intensities; we presented details of two versions
generated via OpenSBLI that operates at the two ends of
this spectrum - highly-bandwidth limited and highly com-
putationally intensive. OPS, at a lower level, is also able to
further optimize for data movement using cache-blocking
tiling.

We then explored the performance of the code generated
automatically with OpenSBLI to that of the code manu-
ally implemented in SBLI. A representative application,

a Taylor-Green Vortex problem, was used for this com-
parison. Performance results indicate a number of impor-
tant conclusions: (1) There is no evidence to indicate that
the high-level abstractions development method in OpenS-
BLI causes any performance degradations compared to the
hand-tuned SBLI application; in a like-for-like compari-
son OpenSBLI performed upto 30% better on the Intel
CPU nodes tested, and matched the performance on the
POWER8 node. (2) Data movement optimizations pro-
vide additional speedups, where reducing the communica-
tions intensity with OpenSBLI provide 2× - 3× speedup
on all the CPU node systems and tiling providing addi-
tional speedups (up to 30%) on the Intel CPU systems,
particularly when large problem sizes are solved. The
balance of computation to communications change due
to these optimizations, where we see over 3-fold increase
on CPUs and 6-fold increase on GPUs in the achieved
computational performance. The achieved bandwidth of
the most time-consuming kernels of the OpenSBLI ap-
plication, compared to the STREAM bandwidth of the
executed systems, also confirms the significant change of
bandwidth utilization with these optimizations. (3) Signif-
icant speedups on GPUs over equivalent CPU nodes were
obtained. A single V100 GPU providing 5× speedups (us-
ing the best application version) over the best performing
CPU node (the two-socket IBM POWER8 CPU node).
These speedups, we observed, also helps the GPU execu-
tions be between 3×to 7×more energy efficient than any
of the CPU systems. This holds, in spite of the GPUs
(including their host CPU system) having a much larger
Wattage than the Intel CPU systems. (4) Excellent strong-
and weak-scaling was observed on ARCHER, a large-scale
CPU cluster at nearly 100K cores. The OpenSBLI ver-
sions matched or outperformed the SBLI code. (5) Good
scalability of the MPI+CUDA version generated through
OpenSBLI, was found on GPU clusters, Titan and Wilkes2
on over 4K GPUs, but providing evidence to indicate fur-
ther improvements to halo exchanges should be carried out
to get near-ideal scaling on these systems. (6) Significant
speedups in terms of strong-scaling were given by the GPU
clusters, Titan and Wilkes2 at smaller machine scales com-
pared to ARCHER, but diminishing returns were observed
as the problem size per GPU gets reduced at higher scale.
Significant speedups ranging from 2.3× to 1.4× were seen
on Titan compared to ARCHER when weak-scaling on all
machine scales tested. Over 4× speedups were seen on
Wilkes when weak-scaling compared to ARCHER. How-
ever, we observed that the energy efficiency of Titan dur-
ing the execution of these applications at scale were better
than Wilkes2 due to the low Wattage of Titan nodes.
Future work aims to further optimize the distributed

memory communications performance that led to less-than
ideal scaling. Optimizations include overlapping compu-
tations with communications such that communication
time could be hidden behind computation time with non-
blocking MPI exchanges. Further improving performance
through fully hybrid execution, where both the CPUs and
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the GPUs of a node can be used to carry out useful com-
putations on a mesh can be explored. Load balancing will
be an issue in this case, where the partition of the mesh al-
located to the CPU will need to be carefully selected such
that it can execute on-par with the attached GPU so that
no overall slow-down occurs. Implementation of the back-
end library infrastructure for OPS to allow the solution of
order dependent algorithms such as the solution to a sys-
tem of tridiagonal equations or wave-front algorithms will
also be carried out to extend the classes of applications
that can be solved with OPS.

OPS, OpenSBLI and the Taylor-Green Vortex applica-
tion used in this research are available as open source soft-
ware in [20] and [19] respectively. The developers welcome
new users and developers to these projects.
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the János Bólyai Research Scholarship of the Hungarian
Academy of Sciences. Project no. PD 124905 has been
implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary,
financed under the PD 17 funding scheme.

This work was performed using resources provided by
the Cambridge Service for Data Driven Discovery (CSD3)
operated by the University of Cambridge Research Com-
puting Service (http://www.csd3.cam.ac.uk/), provided
by Dell EMC and Intel using Tier-2 funding from the En-
gineering and Physical Sciences Research Council (capital
grant EP/P020259/1).

An award of computer time was provided by the Inno-
vative and Novel Computational Impact on Theory and
Experiment (INCITE) program. This research used re-
sources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

This research used the resources of the ARCHER UK
National Supercomputing Service (http://www.archer.
ac.uk). The authors would like to acknowledge the use of
the University of Oxford Advanced Research Computing
(ARC) facility in carrying out this work. http://dx.doi.
org/10.5281/zenodo.22558

References

[1] W. Dally, Power and programmability: the challenges
of exascale computing, http://www.orau.gov/archI2011/

presentations/dallyb.pdf (2011).
[2] M. Snir, B. Gropp, P. Kogge, Exascale research: Preparing for

the post-moore era, whitepaper, http://hdl.handle.net/2142/
25469 (2011).

[3] Top500 News - China Will Deploy Exascale Pro-
totype This Year, https://www.top500.org/news/

china-will-deploy-exascale-prototype-this-year/ (2017).
[4] S. J. Pennycook, J. D. Sewall, V. W. Lee, A metric for per-

formance portability, 2016, in: S. A. Jarvis, S. A. Wright, and
S. D. Hammond. (eds) High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation: 5th In-
ternational Workshop, PMBS 2016, Saltlake City, UT, USA,
November 16, 2016.

[5] G. R. Mudalige, M. B. Giles, J. Thiyagalingam, I. Z. Reguly,
C. Bertolli, P. Kelly, A. Trefethen, Design and initial perfor-
mance of a high-level unstructured mesh framework on hetero-
geneous parallel systems, Parallel Computing 39 (11) (2013)
669–692.

[6] G. R. Mudalige, I. Z. Reguly, M. B. Giles, A. C. Mallinson, W. P.
Gaudin, J. A. Herdman, Performance analysis of a high-level
abstractions-based hydrocode on future computing systems,
Springer International Publishing, Cham, 2015, pp. 85–104, in:
S. A. Jarvis, S. A. Wright, and S. D. Hammond. (eds) High Per-
formance Computing Systems. Performance Modeling, Bench-
marking, and Simulation: 5th International Workshop, PMBS
2014, New Orleans, LA, USA, November 16, 2014. Revised Se-
lected Papers. doi:10.1007/978-3-319-17248-4_5.

[7] H. Carter Edwards, C. R. Trott, D. Sunderland, Kokkos, J.
Parallel Distrib. Comput. 74 (12) (2014) 3202–3216. doi:10.

1016/j.jpdc.2014.07.003.
[8] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini,

A. T. T. McRae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly,
Firedrake: Automating the Finite Element Method by Com-
posing Abstractions, ACM Transactions on Mathematical Soft-
ware.
URL http://arxiv.org/abs/1501.01809

[9] K. B. Ølgaard, A. Logg, G. N. Wells, Automated Code Genera-
tion for Discontinuous Galerkin Methods, CoRR abs/1104.0628.

[10] C. T. Jacobs, M. D. Piggott, Firedrake-Fluids v0.1: numeri-
cal modelling of shallow water flows using an automated solu-
tion framework, Geoscientific Model Development 8 (3) (2015)
533–547. doi:10.5194/gmd-8-533-2015.

[11] P. Vincent, F. Witherden, B. Vermeire, J. S. Park, A. Iyer,
Towards green aviation with python at petascale, in: SC16: In-
ternational Conference for High Performance Computing, Net-
working, Storage and Analysis, 2016, pp. 1–11. doi:10.1109/

SC.2016.1.
[12] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira,

V. Pandolfo, P. Velesko, P. Kazakas, G. Gorman, Devito: To-
wards a generic finite difference dsl using symbolic python,
IEEE, 2016, pp. 67–75. doi:10.1109/PyHPC.2016.9.

[13] SBLI Computer Code, http://www.southampton.ac.uk/

engineering/research/projects/sbli_computer_code.page.
[14] N. D. Sandham, E. Schlein, A. Wagner, S. Willems, J. Steelant,

Transitional shock-wave/boundary-layer interactions in hyper-
sonic flow, Journal of Fluid Mechanics 752 (2014) 349–382.
doi:10.1017/jfm.2014.333.

[15] UK Turbulence Consortium, http://www.turbulence.ac.uk/.
[16] CCP12: High Performance Computing in Engineering,

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/

J010448/1.
[17] Y. Yao, Z. Shang, J. Castagna, R. Johnstone, L. Jones, J. Red-

ford, R. Sandberg, N. Sandham, V. Suponitsky, N. D. Tullio,
Re-engineering a dns code for high-performance computation
of turbulent flows, 47th AIAA Aerospace Sciences Meeting and
Exhibit, US (2009).
URL https://eprints.soton.ac.uk/185807/

[18] G. N. Coleman, R. D. Sandberg, A Primer On Direct Numeri-
cal Simulation of Turbulence - Methods, Procedures and Guide-
lines, Tech. rep., University of Southampton, UK, school of En-
gineering Sciences Aerospace Engineering AFM Reports. AFM
09/01a (2010).

[19] OpenSBLI, https://opensbli.github.io/ (2016).
[20] OPS for Many-Core Platforms, http://www.oerc.ox.ac.uk/

projects/ops (2014).

18

http://www.csd3.cam.ac.uk/
http://www.archer.ac.uk
http://www.archer.ac.uk
http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558
http://www.orau.gov/archI2011/presentations/dallyb.pdf
http://www.orau.gov/archI2011/presentations/dallyb.pdf
http://hdl.handle.net/2142/25469
http://hdl.handle.net/2142/25469
 https://www.top500.org/news/china-will-deploy-exascale-prototype-this-year/
 https://www.top500.org/news/china-will-deploy-exascale-prototype-this-year/
http://dx.doi.org/10.1007/978-3-319-17248-4_5
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://arxiv.org/abs/1501.01809
http://arxiv.org/abs/1501.01809
http://arxiv.org/abs/1501.01809
http://dx.doi.org/10.5194/gmd-8-533-2015
http://dx.doi.org/10.1109/SC.2016.1
http://dx.doi.org/10.1109/SC.2016.1
http://dx.doi.org/10.1109/PyHPC.2016.9
 http://www.southampton.ac.uk/engineering/research/projects/sbli_computer_code.pa ge
 http://www.southampton.ac.uk/engineering/research/projects/sbli_computer_code.pa ge
http://dx.doi.org/10.1017/jfm.2014.333
http://www.turbulence.ac.uk/
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J010448/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J010448/1
https://eprints.soton.ac.uk/185807/
https://eprints.soton.ac.uk/185807/
https://eprints.soton.ac.uk/185807/
https://opensbli.github.io/
http://www.oerc.ox.ac.uk/projects/ops
http://www.oerc.ox.ac.uk/projects/ops


[21] HiLeMMS: High-Level Mesoscale Modelling Sys-
tem, https://www.epcc.ed.ac.uk/projects-portfolio/

hilemms-high-level-mesoscale-modelling-system (2017).
[22] S. P. Jammy, C. T. Jacobs, N. D. Sandham, Performance evalua-

tion of explicit finite difference algorithms with varying amounts
of computational and memory intensity, Journal of Computa-
tional Science (2016) –doi:10.1016/j.jocs.2016.10.015.

[23] C. T. Jacobs, S. P. Jammy, N. D. Sandham, OpenSBLI: A
Framework for the Automated Derivation and Parallel Execu-
tion of Finite Difference Solvers on a Range of Computer Archi-
tectures, Journal of Computational Science 18 (2017) 12 – 23.
doi:10.1016/j.jocs.2016.11.001.

[24] I. Z. Reguly, G. R. Mudalige, M. B. Giles, Loop tiling in large-
scale stencil codes at run-time with ops, IEEE Transactions on
Parallel and Distributed Systems 29 (4) (2018) 873–886. doi:

10.1109/TPDS.2017.2778161.
[25] Archer at EPCC, https://www.epcc.ed.ac.uk/facilities/

archer (2017).
[26] Titan at ORNL, https://www.olcf.ornl.gov/titan/ (2017).
[27] Wilkes2, https://www.top500.org/system/179044 (2017).
[28] OPE Github Repository, https://github.com/gihanmudalige/

OPS (2017).
[29] I. Z. Reguly, G. Mudalige, M. B. Giles, OPS C++ users

manual, http://www.oerc.ox.ac.uk/sites/default/files/

uploads/ProjectFiles/OPS/user.pdf (2017).
[30] I. Reguly, Tutorial: Migrating an application to use OPS,

https://op-dsl.github.io/docs/OPS/tutorial.pdf (2018).
[31] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran,

S. McIntosh-Smith, The ops domain specific abstraction for
multi-block structured grid computations, in: 2014 Fourth In-
ternational Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing, 2014, pp.
58–67. doi:10.1109/WOLFHPC.2014.7.

[32] M. Classen, M. Griebl, Automatic code generation for dis-
tributed memory architectures in the polytope model, in: Pro-
ceedings 20th IEEE International Parallel Distributed Pro-
cessing Symposium, 2006, pp. 1–7. doi:10.1109/IPDPS.2006.

1639500.
[33] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanu-

jam, A. Rountev, P. Sadayappan, Effective automatic paral-
lelization of stencil computations, SIGPLAN Not. 42 (6) (2007)
235–244. doi:10.1145/1273442.1250761.
URL http://doi.acm.org/10.1145/1273442.1250761

[34] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, C. E.
Leiserson, The pochoir stencil compiler, in: Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA ’11, ACM, New York, NY,
USA, 2011, pp. 117–128. doi:10.1145/1989493.1989508.

[35] R. T. Mullapudi, V. Vasista, U. Bondhugula, Polymage: Au-
tomatic optimization for image processing pipelines, SIGARCH
Comput. Archit. News 43 (1) (2015) 429–443. doi:10.1145/

2786763.2694364.
[36] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,

S. Amarasinghe, Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image pro-
cessing pipelines, in: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion, PLDI ’13, ACM, New York, NY, USA, 2013, pp. 519–530.
doi:10.1145/2491956.2462176.
URL http://doi.acm.org/10.1145/2491956.2462176

[37] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanu-
jam, A. Rountev, P. Sadayappan, Automatic transformations
for communication-minimized parallelization and locality opti-
mization in the polyhedral model, in: International Conference
on Compiler Construction (ETAPS CC), 2008.

[38] T. Denniston, S. Kamil, S. Amarasinghe, Distributed halide,
in: Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’16,
ACM, New York, NY, USA, 2016, pp. 5:1–5:12. doi:10.1145/

2851141.2851157.
URL http://doi.acm.org/10.1145/2851141.2851157

[39] D. J. Lusher, S. P. Jammy, N. D. Sandham, Shock-
wave/boundary-layer interactions in the automatic source-code
generation framework opensbli, Computers and Fluidsdoi:10.
1016/j.compfluid.2018.03.081.

[40] C. T. Jacobs, M. Zauner, N. D. Tullio, S. P. Jammy, D. J.
Lusher, N. D. Sandham, An error indicator for finite difference
methods using spectral techniques with application to aerofoil
simulation, Computers and Fluids 168 (2018) 67 – 72. doi:

10.1016/j.compfluid.2018.03.065.
[41] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H.

Morf, U. Frisch, Small-scale structure of the taylorgreen vortex,
Journal of Fluid Mechanics 130 (1983) 411452. doi:10.1017/

S0022112083001159.
[42] J. DeBonis, Solutions of the taylor-green vortex problem using

high-resolution explicit finite difference methods, in: 51st AIAA
Aerospace Sciences Meeting including the New Horizons Forum
and Aerospace Exposition, Aerospace Sciences Meetings, 2013.
doi:10.2514/6.2013-382.

[43] J. R. Bull, A. Jameson, Simulation of the compressible taylor
green vortex using high-order flux reconstruction schemes, in:
The 7th AIAA Theoretical Fluid Mechanics Conference, AIAA
Aviation, 2014. doi:10.2514/6.2014-3210.

[44] I. Z. Reguly, G. R. Mudalige, M. B. Giles, S. Maheswaran,
Improving resilience of scientific software through a domain-
specific approach, Parallel and Distributed Computing (2019,
accepted for publication).

[45] Intel Xeon Processor -E5-2660-v4 @ 2.0GHz (Broad-
well), https://ark.intel.com/products/91772/

Intel-Xeon-Processor-E5-2660-v4-35M-Cache-2-00-GHz-

(Accesed Jan 2019).
[46] Intel Xeon Processor Silver 4116 @ 2.10GHz (Sky-

Lake), https://ark.intel.com/products/120481/

Intel-Xeon-Silver-4116-Processor-16-5M-Cache-2-10-GHz-

(Accesed Jan 2018).
[47] Assessing IBM’s POWER8, Part 1: A Low Level Look

at Little Endian, https://www.anandtech.com/show/10435/

assessing-ibms-power8-part-1/5 (Accesed Jan 2019).
[48] NVIDIA Tesla P100 GPU, https://images.nvidia.com/

content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf

(Accessed Jan 2019).
[49] NVIDIA Tesla V100 GPU, https://images.

nvidia.com/content/technologies/volta/pdf/

tesla-volta-v100-datasheet-letter-fnl-web.pdf (Accessed
Jan 2019).

[50] S. Jammy, C. T. Jacobs, D. J. Lusher, N. D. Sandham, En-
ergy Consumption of Algorithms for Solving the Compress-
ible Navier-Stokes Equations On CPU’s, GPU’s and KNL’s, in:
M. Taufer, B. Mohr, J. M. Kunkel (Eds.), 7th European Con-
ference on Computational Fluid Dynamics (ECFD 7), Glasgow,
UK, 2018.

[51] I. Z. Reguly, A.-K. Keita, R. Zurob, M. B. Giles, High perfor-
mance computing on the ibm power8 platform, in: M. Taufer,
B. Mohr, J. M. Kunkel (Eds.), High Performance Computing,
Springer International Publishing, Cham, 2016, pp. 235–254.

[52] J. D. McCalpin, Memory bandwidth and machine balance in
current high performance computers, IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter (1995) 19–25.

[53] T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, Gpu-
stream v2.0: Benchmarking the achievable memory bandwidth
of many-core processors across diverse parallel programming
models, in: ISC Workshops, 2016.

[54] ARCHER - Cray XC30: November 2018 List, https://www.

top500.org/system/178188 (Accessed Jan 2019).
[55] Titan - Cray XK7: November 2018 List, https://www.top500.

org/system/177975 (Accessed Jan 2019).
[56] Wilkes2, https://www.hpc.cam.ac.uk/systems/wilkes-2 (Ac-

cessed Jan 2019).
[57] G. Mudalige, M. Giles, I. Reguly, C. Bertolli, P. Kelly, Op2: An

active library framework for solving unstructured mesh-based
applications on multi-core and many-core architectures, 2012

19

 https://www.epcc.ed.ac.uk/projects-portfolio/hilemms-high-level-mesoscale-modell ing-system
 https://www.epcc.ed.ac.uk/projects-portfolio/hilemms-high-level-mesoscale-modell ing-system
http://dx.doi.org/10.1016/j.jocs.2016.10.015
http://dx.doi.org/10.1016/j.jocs.2016.11.001
http://dx.doi.org/10.1109/TPDS.2017.2778161
http://dx.doi.org/10.1109/TPDS.2017.2778161
https://www.epcc.ed.ac.uk/facilities/archer
https://www.epcc.ed.ac.uk/facilities/archer
https://www.olcf.ornl.gov/titan/
https://www.top500.org/system/179044
https://github.com/gihanmudalige/OPS
https://github.com/gihanmudalige/OPS
 http://www.oerc.ox.ac.uk/sites/default/files/uploads/ProjectFiles/OPS/user.pdf
 http://www.oerc.ox.ac.uk/sites/default/files/uploads/ProjectFiles/OPS/user.pdf
https://op-dsl.github.io/docs/OPS/tutorial.pdf
http://dx.doi.org/10.1109/WOLFHPC.2014.7
http://dx.doi.org/10.1109/IPDPS.2006.1639500
http://dx.doi.org/10.1109/IPDPS.2006.1639500
http://doi.acm.org/10.1145/1273442.1250761
http://doi.acm.org/10.1145/1273442.1250761
http://dx.doi.org/10.1145/1273442.1250761
http://doi.acm.org/10.1145/1273442.1250761
http://dx.doi.org/10.1145/1989493.1989508
http://dx.doi.org/10.1145/2786763.2694364
http://dx.doi.org/10.1145/2786763.2694364
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2851141.2851157
http://dx.doi.org/10.1145/2851141.2851157
http://dx.doi.org/10.1145/2851141.2851157
http://doi.acm.org/10.1145/2851141.2851157
http://dx.doi.org/10.1016/j.compfluid.2018.03.081
http://dx.doi.org/10.1016/j.compfluid.2018.03.081
http://dx.doi.org/10.1016/j.compfluid.2018.03.065
http://dx.doi.org/10.1016/j.compfluid.2018.03.065
http://dx.doi.org/10.1017/S0022112083001159
http://dx.doi.org/10.1017/S0022112083001159
http://dx.doi.org/10.2514/6.2013-382
http://dx.doi.org/10.2514/6.2014-3210
 https://ark.intel.com/products/91772/Intel-Xeon-Processor-E5-2660-v4-35M-Cache-2 -00-GHz-
 https://ark.intel.com/products/91772/Intel-Xeon-Processor-E5-2660-v4-35M-Cache-2 -00-GHz-
 https://ark.intel.com/products/120481/Intel-Xeon-Silver-4116-Processor-16-5M-Cac he-2-10-GHz-
 https://ark.intel.com/products/120481/Intel-Xeon-Silver-4116-Processor-16-5M-Cac he-2-10-GHz-
https://www.anandtech.com/show/10435/assessing-ibms-power8-part-1/5
https://www.anandtech.com/show/10435/assessing-ibms-power8-part-1/5
 https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf 
 https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf 
 https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datash eet-letter-fnl-web.pdf 
 https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datash eet-letter-fnl-web.pdf 
 https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datash eet-letter-fnl-web.pdf 
https://www.top500.org/system/178188
https://www.top500.org/system/178188
https://www.top500.org/system/177975
https://www.top500.org/system/177975
https://www.hpc.cam.ac.uk/systems/wilkes-2
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594


Innovative Parallel Computing, InPar 2012doi:10.1109/InPar.
2012.6339594.
URL http://dx.doi.org/10.1109/InPar.2012.6339594

[58] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts,
P. H. J. Kelly, D. Radford, Acceleration of a full-scale industrial
cfd application with op2, IEEE Transactions on Parallel and
Distributed Systems 27 (5) (2016) 1265–1278. doi:10.1109/

TPDS.2015.2453972.
[59] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, T. C. Schulthess,

Stella: A domain-specific tool for structured grid methods in
weather and climate models, in: Proceedings of the Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’15, ACM, New York, NY, USA,
2015, pp. 41:1–41:12. doi:10.1145/2807591.2807627.

[60] PSyclone Project - GitHub Repository, https://github.com/

stfc/PSyclone (2018).
[61] R. D. Hornung, J. A. Keasler, The RAJA portability layer:

Overview and status, Tech. rep., Lawrence Livermore National
Lab. (LLNL) (9 2014). doi:10.2172/1169830.

20

http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/TPDS.2015.2453972
http://dx.doi.org/10.1109/TPDS.2015.2453972
http://dx.doi.org/10.1145/2807591.2807627
https://github.com/stfc/PSyclone
https://github.com/stfc/PSyclone
http://dx.doi.org/10.2172/1169830

	Introduction
	The OPS Embedded DSL
	OPS API
	Developing Applications with OPS

	OpenSBLI : Automated Derivation of Finite-Difference Computations
	Re-Engineering SBLI to OpenSBLI
	Computation vs. Data Movement Transformations
	Re-Computation of Values
	Tiling


	Performance
	Single Node Performance
	Runtime Performance
	Power and Energy Consumption
	Computation and Bandwidth Performance

	Large-scale Performance
	Runtime and Scaling Performance
	Power and Energy Consumption
	Computation and Communications Performance


	Related Work
	Conclusions

