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An asymptotic approach is used to analyze the propagation and dissipation of wavelike 
solutions to finite difference equations, It is shown that to first order the amplitude of a wave 
is convected at the local group velocity and varies in magnitude if the coeflicients of the finite 
difference equation vary. Asymptotic boundary conditions coupling the amplitudes of different 
wave solutions are also derived. Equations are derived for the motion of wavepackets and 
their interaction at boundaries. Comparison with numerical experiments demonstrates the 
success and limitations of the asymptotic approach. Finally, a global stability analysis is 
developed. Vi”. 1985 Academic Press, Inc. 

NOTATION 

6~ uj+ l/2= ui+ I - uj A ui+ l/2 = t( u, + 1 + ui) 

A,Ui= Uj,l- Vi v,uj= u,- ujm , 

EmxUi= ui+m 

When there are several independent variables the subscript on the finite operator 
denotes the direction of the shift, differencing or averaging. For example, 

if Uy = u(xi, t,) then6.U:,,,,=U~,,-U:. 

A = complex conjugate of A 

Re( A ) = Real component of A 

Im(A ) = Imaginary component of A 
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I. INTRODUCTION 

Methods for analyzing dispersive partial differential equations are well 
established. Using Fourier decomposition and asymptotic evaluation of integrals, or 
by direct asymptotic expansion [S, 91, it can be shown that the energy propagates 
at the local group velocity. Ray theory [5,9] then treats wavepackets, localized 
wavelike disturbances, as particles and derives simple o.d.e.‘s for their motion. This 
paper applies the techniques to the analysis of numerical wave propagation in finite 
difference equations. Due to the discretization the numerical waves are always dis- 
persive even if the analytic system being modeled is nondispersive. Until recently 
the importance of the group velocity in analyzing finite difference solutions does not 
seem to have been recognized. Kentzer [4] discusses the role of group velocity and 
shows that in many common schemes the numerical group velocity at high 
wavenumbers is in the opposite direction to the analytic group velocity. 
Vichnevetsky and Bowles [8] derive reflection coefficients for the interaction of 
waves at boundaries, and present several illustrative numerical examples. Trefethen 
[6] provides a group velocity interpretation of the stability theory of Gustafsson et 
al. [3], and in a forthcoming paper [7] will derive rigorous conditions for the P- 
stability [lo] of two-boundary problems. In the stability analysis in this paper we 
use P-stability, which is concerned with stability in the limit t -co, rather than 
GKS-stability, which is concerned with stability in the limit At + 0. Reference [2] 
contains further details and numerical examples of the work in this paper. It also 
includes a more general global stability analysis which allows for variable coef- 
ficients in the finite difference equations, and in the case of constant coefficients 
reduces to the exact stability analysis of Beam et al. [ 11. 

The approach we use is an asymptotic one in which a wave solution is expressed 
as a product of a complex amplitude and an oscillatory phase function whose fre- 
quency and wavenumber may also be complex. The asymptotic assumption, or 
approximation, is that the length scale for variations in the amplitude and 
wavenumber is large relative to a mesh cell length. An asymptotic expansion leads 
to a local dispersion relation relating the wavenumber to the frequency. The Iirst- 
order terms produce an equation for the amplitude in which the local group 
velocity appears as the velocity of convection of the amplitude. Also there is a 
variation in the magnitude of the amplitude if the coefficients of the finite difference 
equation vary. All of the wave solutions with a given frequency and different 
wavenumbers are coupled at the boundaries by asymptotic boundary conditions. If 
there are only two waves per frequency then this reduces to the amplitude reflection 
coefficients computed by Vichnevetsky and Bowles [8]. 

The following section develops a theory for the motion of wavepackets which are 
wavelike disturbances of finite length and constant frequency. Using the techniques 
of classical ray theory [S, 91, these can be treated as particles and simple o.d.e.‘s 
can be derived to describe their motion and the change in their energy. When they 
reach the boundary they are reflected into wavepackets of a different wavenumber 
but the same frequency and the energy of the reflected wavepacket can be 



PROPAGATIONOFNUMERICALWAVES 351 

calculated from boundary reflection coefficients. The last section derives a global 
stability analysis in which the usual Fourier stability analysis is modified to 
calculate the effects of nonperiodic boundary conditions and slowly varying coef- 
ficients. This analysis is then used to calculate the spectral radius of the backward 
Euler method. 

II. ASYMPTOTIC AMPLITUDE ANALYSIS 

Asymptotic Amplitude Equation 

Consider a general linear homogeneous finite difference equation with variable 
coefficients, 

L,Ui”=O (1) 

where 

Li E 2 Cmp(x) EmxEpt. (2) 
n1.p 

If the coefficients C,, are constants then 

U,” = exp[i(j@ - nQ)] (3) 

is an exact solution of (1) provided 

C C, exp[i(md -pQ)] = 0. 
WP 

(4) 

This equation is called the dispersion relation between wavenumber d and fre- 
quency 52. If the coefficients are not constant then U can 

17; = A(j, n) exp[iY(j, n)] 

be expressed as 

(5) 

where A(j, n) is a slowly varying amplitude and vl(j, n) 
and is related to the frequency Q and wavenumber 4 by 

a!P -sz a!P 
an= 7 aj= 4. 

The asymptotic approximation which is made is that 

is the phase of the wave 

(6a, b) 

the length scale L, and 
time scale TA for variations in A and the length scale L, for variations in 4 are 
much greater than 1. Substituting (5) into (2) and expanding A and Y in Taylor 
series about a point (j, n) yields 
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L,U; = exp[iY] 1 C,,(j) exp[i(md -pQ)] 
WP 

+ O(AL,=, ATi2, AL,‘). (7) 

To satisfy Eq. (1) the amplitude A( j, n) must satisfy 

^ 

ao(~,n,i)A+a,(b,9,j)~+a2((,~,j)~+a,(b,R,i)A~=0 (f-3) 

where 

~~(4, Q,j) = C C,,(j) expP(m4 -NJ1 
WP 

(94 

(9b) 

au0 
a2M QJ) = -i 3 

( ) 
Rjconst 

a,(#, Q, j) = - f a2uo 
2qF ( 1 Rjconst 

(9c) 

WI 

Because of the asymptotic assumptions (8) can only be satisfied if 

u,(d, 0, j) = 0 + O(L; ‘, L, l, T,-I). (10) 

This is the asymptotic form of the dispersion relation between 4 and !2 and will 
usually be satisfied by setting a, identically equal to zero. 4 is now a slowly varying 
function of j due to the slow variation in the coefficients. Neglecting the second-or- 
der terms and dividing by a, gives the asymptotic amplitude equation, 

aA 
S;;+rpF=~A 

J 

where 

rg = u2lu 1 and E= -(u3$+uo)/uI. 

Differentiating Eq. (10) with j held constant gives 

(11) 

(12, 13) 

(14) 
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Hence, 

as2 

( ) 3 jconst 

= azfa, = rg. 

353 

(15) 

Thus the amplitude A of the wave is convected at the local group velocity. 

Asymptotic Boundary Conditions 

The general solution of Eq. (1) is a sum of waves with different constant frequen- 
cies Q and slowly varying wavenumber 4 and amplitude A. 

. (16) 

The outer summation is over different values of !2, and the inner summation is 
over the M different values of 4 which satisfy the dispersion relation for each Q. For 
each Q, m the amplitude A satisfies the asymptotic amplitude equation on the 
interior of the computational domain independent of all the other waves. All the 
waves of each frequency are, however, coupled by boundary conditions. 

Suppose one of the finite difference boundary conditions at j= J is 

BU; = c D,P E,X EPl Ul; = 0. (17) 
LP 

Performing the same expansion as in the derivation of the asymptotic amplitude 
equation, retaining only the leading terms, and equating the coefficients of 
exp( -isZ) for each 52, the boundary condition becomes 

f 
IX=1 

WA &J A,(J) exp [i jb h, dt] = 0 (18) 

where 

W’k 4,) = c Dip ew(W, -PQ)). 
LP 

(19) 

There are similar boundary conditions at j = 0. 

III. RAY THEORY AND WAVEPACKET PARTICLES 

In addition to the approximations made earlier this section assumes that for all 
real wavenumbers $, the frequency 52 is real for all j and so the group velocity rg is 
real. 
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SO 

A Lagrangian-type total time derivative is defined by 

4 z=yg 

dA 
- EA 

zl- 

and 

(20) 

(21) 

(22) 

A general initial value problem for a wave of frequency 52 and wave-number 
r$(Q, j) can be solved by integrating these equations from given initial conditions. 

A wavepacket is a wave for which the amplitude A is nonzero on only a small 
part of the domain. The energy is defined to be 

E(n)=~‘1~A(x,r.)~2dx=~~~A(j,.)12~dj 
x0 0 

Differentiating this definition, and using (22), yields 

(25) 

Thus Eqs. (21) and (25) describe the motion of a wavepacket particle in the 
interior of the computational domain. When the wavepacket reaches a boundary it 
is reflected as one or more wavepackets with the same frequency but different 
wavenumber. For the case in which there are just two wavenumbers corresponding 
to the same frequency the ratio of the reflected energy E2 to the incident energy E, 
is given by 

where the amplitude reflection coefficient R, is defined by 

(26) 

(27) 

and is determined from the asymptotic boundary condition (18). 
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EXAMPLE. The example is the solution of the model convective equation, 

(28) 

using a trapezoidal method, 

with 

cAt 
rj+ l/2 = 

xj+, -xi. 
(30) 

Figure 1 shows the solution U(x, t) corresponding to a uniform grid 0 <j < 200 
with r = 1, and initial conditions corresponding to a wavepacket approximately 
20 mesh units wide. Comparison of the heights of the wavecrests a-e at time levels 
60 and 120 shows that the phase velocity, the velocity of the wavecrests, is greater 
than the group velocity, the velocity of the wavepacket. 

Figures 2 and 3 show comparisons of the wavepacket theory with numerical 
experiments. In each case “experimental” values for X(n), the position of the 
wavepacket, and E(n), its energy, are obtained by solving the finite difference 
equations and “predicted” values are calculated by solving the wavepacket 
equations. The initial wavepacket in each case is similar to that in the previous 
example. 

c 
t-l= 

0 60 

0 120 

0 180 

0 - 240 

UO Mww 300 

0 - 360 

0 “.A/- 420 

0- 480 

0 
I I I I 

0 .50 1.00 
X 

FIG. 1. Numerical solution of convection equation. 
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- NUMERICAL 
EXPERIMENT 

- WAVEPACKET 

FIG. 2. Position and energy of wavepacket: effect of nonconstant CFL number. 

In the first case r varies exponentially from 0.05 at j = 0 to 0.2 at j = 200 and 
Q = 0.04. Figure 2 shows A’(n) and ln[E(n)] both predicted and experimental. This 
example shows the movement of a wavepacket and the change in its energy due to 
the variation in r. The agreement between the predicted and experimental values is 
excellent. The energy of the analytic solution is constant so the wavepacket theory 
has successfully predicted almost all of the change in the numerical energy due to 
the nonuniform grid. 

In the second case r is constant and equal to 1.0 and Q = 0.3. Figure 3 shows 
X(n) and ln[E(n)]. This example illustrates the effect of the downstream boundary 

- NUMERICAL 
EXPERIMENT 

- ~;M;+CKCKET 

FIG. 3. Position and energy of wavepacket: reflections at boundaries. 
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reflecting a wavepacket with reduced energy. Because of the finite length of the 
wavepacket the drop in energy is smeared and X(n) does not quite reach 1.0. Again 
the agreement is excellent with the wavepacket theory accurately predicting the 
energy of the reflected wavepacket. 

IV. ASYMPTOTIC STABILITY ANALYSIS 

In this section it is assumed that there are two wavenumbers corresponding to 
each frequency, and that if one is real then so too is the other. Examples of methods 
satisfying these conditions are the trapezoidal method applied to the model convec- 
tive problem with variable CFL number Y, and the whole class of Beam-Warming 
schemes applied to the model convective problem with constant CFL number. 

The normal Fourier analysis assumes constant coefficients and periodic boundary 
conditions and derives eigenfrequencies Q(4) where 4 is a real wavenumber satisfy- 
ing the periodic boundary conditions and 52($) is the corresponding frequency 
given by the dispersion relation. The common use of Fourier analysis to predict the 
stability of problems with nonperiodic boundary conditions implicitly assumes that 
Q(4) is a close approximation to the true eigenfrequency. This section follows that 
assumption, calculates a correction 0’ to the Fourier frequency Q(4) due to the 
boundary conditions, and then determines the validity of the assumption based on 
the asymptotic errors. 

uJ'=A,(j,n)exp (31) 

If the true eigenfrequency is Q + Q’ then A cc exp( -X2’) and so 

A,( j, n) = exp( - inQ’) A,( j, 0), m= 1,2. (32) 

Substituting these expressions into the asymptotic amplitude equations to 
evaluate the time derivative and then integrating the resultant o.d.e. gives 

A,,,(J,O)=A,,,(O,O)exp(j~(~) Q), m-1,2. 
#T m 

The two asymptotic boundary conditions then become in matrix form 

(33) 

(34) 

A nontrivial solution exists only if det B= 0 and this leads to the following 
equation for 52’: 
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If #i, & are chosen so that the r.h.s. is real and positive then 

where 

Thus the frequency Q resulting from a normal Fourier analysis is corrected by an 
amount Q’ due to boundary conditions and variable coefficients. This approach, 
using R as an initial approximation’to the actual eigenfrequency, is valid provided 
the asymptotic error is small. The .asymptotic error is 0(Li2, Ti2) = O(J-2, Br2) 
so provided v,~J, NB 1 and hence 0’ 6 1 except near frequencies for which 

is zero, or infinite, which usually occurs at Q =O. However, these frequencies are 
heavily damped by the boundary conditions and so an accurate estimate of their 
eigenfrequencies is not essential. This method gives accurate asymptotic values near 
the critical frequencies which are least damped and which therefore determine the 
overall spectral radius of the scheme. 

EXAMPLE. This example is the backward Euler method applied to the model 
convective problem with constant CFL number Y and space extrapolation at the 
downstream boundary. The finite difference equation is 

(V, + rpL,h,) u; + ’ = 0 (38) 

and the dispersion relation is 

a, = 1 - exp(iQ) + ir sin(d) = 0. (39) 

After carrying out the calculations the frequency correction Q’ is found to be [2] 

n, = _ ir cos(4)(1 - ir sin(d)) logCcot(4,2), 
23( 1 + r2 sin’(d)) 

(40) 
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Thus the effect of the boundary conditions is to greatly accelerate convergence at 
low wavenumbers while having little effect on the higher wavenumbers. The spectral 
radius I is 

A=rnF (exp(-i(Q+G?‘))( 

(41) 
N 1 _ r log(J) 

4J 
for J% r. 

V. CONCLUSIONS 

The validity of the asymptotic approach developed in this paper is demonstrated 
by the numerical results in Section III. The limitations of the wavepacket theory are 
due to the asymptotic approximations involved in treating the wavepacket as a par- 
ticle. The stability analysis in Section IV uses fewer approximations and so the 
errors will be substantially smaller. 

The calculation of the asymptotic amplitude equation and boundary conditions 
for a particular case is no more difficult than a normal Fourier analysis. For 
applicable cases the wavepacket theory and the stability analysis are 
straightforward. In more complex cases the main benefit from the theory is the 
insight given by the asymptotic amplitude equation and boundary conditions. The 
amplitude equation gives the group velocity and the effect of varying coefficients 
which is of great interest since in 2-D cascade geometries cell lengths can vary by 
factors of up to 100 in inviscid calculations and up to 1000 in viscous calculations. 
The asymptotic boundary conditions give the amplitude reflection coefficients 
which provide a practical criterion for choosing the best numerical boundary con- 
ditions. 
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