
ISABE-2001-1055Adjoint Methods for Turbomahinery DesignM. S. Campobasso �M. C. Duta yM. B. Giles zOxford University Computing LaboratoryOxford, OX1 3QD, U.K.AbstratThis paper disusses the use of both steady andunsteady disrete adjoint methods for the designof turbomahinery blades. Steady adjoint methodsgive the linear sensitivity of steady-state quantitiessuh as the mass ow and the average exit owangle to arbitrary hanges in the geometry of theblades. This linear sensitivity information an thenbe used as part of a nonlinear optimisation proe-dure. The unsteady adjoint method is based on asingle frequeny of unsteadiness and gives the gen-eralised fore for a partiular strutural mode ofvibration due to arbitrary inoming wakes. Thisan be used to tailor the radial variation in the in-oming wakes to greatly redue the level of foredvibration they indue.The paper presents an overview of the disreteadjoint approah (whih follows the work of Elliottand Anderson for external aerodynami applia-tions), explaining why it gives exatly the sameresults as linear perturbation methods, but at agreatly redued omputational ost. The key is-sues in the numerial implementation of the adjointmethods are disussed for both the Euler and theReynolds-averaged Navier-Stokes equations. Theorretness of the implementation is validated byomparison to both nonlinear and linear perturba-tion alulations.IntrodutionModern turbomahinery has to meet exatingstandards of eÆieny resulting in low weight andhighly loaded engine omponents. For this rea-son, tehniques for the optimisation of the designof fans, ompressors and turbines are beominginreasingly popular in the turbomahinery indus-try. Multidisiplinary design systems allow the de-signer to modify blade and end wall geometries inorder to optimise the steady aerodynami perfor-mane,15 possibly ful�lling presribed mehanial�email: ms�omlab.ox.a.ukyemail: md�omlab.ox.a.ukzemail: giles�omlab.ox.a.uk

onstraints. For example the minimum ross se-tion of the blade annot be redued below a mini-mum threshold to prevent the steady working stressfrom exeeding the material strength.However, even if the redesigned blade ful�ls thesteady stress requirements, the redued sti�nessmay lead to ritial unsteady stresses due to the in-herent unsteadiness of turbomahinery ows. Therelative motion of adjaent rotors and stators trans-forms spatial variations of the ow variables likethe stati pressure into periodially time-varyingfores ating on the blades. The onsequent vibra-tion may result in the phenomenon of High CyleFatigue (HCF), whih may shorten the life of theblades below the target life of the engine. This ex-plains the growing importane of unsteady designmethods. By this expression, one means designingomponents whih an better withstand unsteadyaeroelasti loads, like those due to fored response.Several funtionals an be hosen for the optimi-sation of the steady design. One obvious hoiewould be the stage eÆieny, whih in turn islinked to the exit loss. However, the seondary ki-neti energy is often preferred, being less a�etedthan the loss by possible inauraies assoiatedwith the turbulene models. Other objet fun-tions inlude the mass ow and the exit angle.The formulation of the unsteady design problemis less trivial. Over the past two deades, a numberof methods have emerged to arry out the analy-sis of turbomahinery aeroelastiity, varying fromunoupled linearised potential ow solvers8, 17 tofully-oupled nonlinear three-dimensional unsteadyvisous methods.12Within this range, the unou-pled linear harmoni Euler and Navier-Stokes (NS)methods have proved to be a suessful ompromisebetween auray and ost and are now widely pre-ferred in industry as a fast, aurate tool for aeroe-lasti preditions. Indeed, a growing body of evi-dene indiates that linear visous alulations areadequate for a surprisingly large range of applia-tions.1, 9, 16 For the predition of the level of stru-tural vibrations, the most important output fromsuh linear unsteady analyses is a quantity known1 of 7



as the \worksum".2 In the ontext of Lagrangianmehanis, the worksum orresponds to the gen-eralised fore due to the linear unsteady aerody-namis ating on a partiular strutural mode ofvibration and it is therefore the obvious hoie forthe objet funtion to be minimised in the unsteadydesign problem.In nonlinear gradient based optimisation, one hasto determine the sensitivities of the objet fun-tion to all the n design parameters at eah step ofthe optimisation. One way of aomplishing this,is to perform n + 1 non-linear NS alulations ateah step. The adjoint method is a mathematialtehnique whih allows the determination of all nomponents of the gradient with a single ompu-tation, at a ost omparable with that of a singlesolution of the non-linear NS equations. Thereforethe omputational bene�t of the adjoint approahinreases with the number of design parameters n.The adjoint tehnique for optimal aeronautialdesign has been developed by Jameson.10, 11 Theuse of the adjoint method for the optimisation ofthe unsteady turbomahinery design is a novel teh-nique being developed at the Oxford UniversityComputing Laboratory.2, 3, 6 In ref. [3℄ the har-moni adjoint approah is suessfully applied forthe minimisation of the blade fored response byvarying the shape of the inoming wakes, whih ul-timately requires a 3D re-design of the upstreamblade row.This paper summarises the main aspets of thetheory behind the implementation of the HYDRAsuite of non-linear, linear and adjoint NS odes,demonstrates how the gradients of steady and un-steady objet funtions an be determined equiva-lently with the linear or adjoint methods and provesthe e�etiveness of the adjoint approah for turbo-mahinery design with two pratial examples.Nonlinear Flow AnalysisWe begin with the disrete nonlinear analysis ofthe time-averaged turbulent ow within a singleturbomahinery blade row in its frame of referene(i.e. stationary for a stator, rotating for a rotor).The ow is desribed by the Reynolds{averaged NSequations oupled with the Spalart{Allmaras tur-bulene model. Due to rotation, entrifugal andCoriolis fores, soure terms appear in the momen-tum equations. The analysis omputes the vetorU of primitive ow variables (inluding the turbu-lene variables) orresponding to a omputationalgrid with nodal oordinates X, on whih the non-linear ow equations an be expressed asN(U;X) = 0: (1)The vetor N represents the spatially disretisedresiduals, a nonlinear funtion of the disrete ow

variables and, due to the disretisation, also a fun-tion of the grid node oordinates. Beause thegoverning equations are approximated on an un-strutured grid using an edge-based algorithm,13, 14the residual vetorN is a sum of ontributions fromall of the edges of the grid, with eah edge on-tributing only to the residuals orresponding to thetwo nodes at either end.For turbomahinery, the boundary onditions areof three types; inow/outow, periodi and invis-id/visous wall. The inow and outow bound-aries are handled through uxes whih inorpo-rate the appropriate far-�eld information. Thusthese boundary onditions beome part of the resid-ual vetor N. Periodiity is treated very simplythrough the use of mathing pairs of periodi nodes,one on the lower and one on the upper periodiboundary, at whih the ow is de�ned to be identi-al apart from the appropriate rotation of the velo-ity vetors to aount for the annular nature of theturbomahinery ow domain. By ombining uxresiduals at the two periodi nodes in an appropri-ate manner to maintain periodiity, this boundaryondition again just requires minor hanges to thede�nition of the ux residual vetor N. Furtherdetails are given in referenes.2, 13It is the wall boundary ondition whih requires amore substantial hange in the form of the disreteequations. For visous ows, a no-slip boundaryondition is applied by disarding the momentumresiduals and replaing these equations by the spe-i�ation of zero veloity at the boundary nodes. Forinvisid ows, the formulation of the ux residu-als for boundary nodes is based on zero mass uxthrough the boundary fae, but in addition owtangeny is enfored by setting the normal ompo-nent of the surfae veloity to zero, disregarding thenormal omponent of the momentum residuals.These strong wall boundary onditions, in whihone or more omponents of the momentum residu-als are disarded and replaed by the spei�ationof orresponding veloity omponents, an be ex-pressed as (I�B) N(U;X) = 0; (2)B U = 0: (3)Here B is a projetion matrix whih extratsthe momentum/veloity omponents at the wallboundaries.These equations are solved using a �ve-stageRunge-Kutta sheme, with a Jaobi preonditionerand multigrid to aelerate onvergene.13, 14Linear AnalysisBoth the hanges of geometri design parameterssuh as blade stagger angle, thikness and amber2 of 7



and the ow �eld unsteadiness suh as the periodi-ally time-varying fores assoiated to the inomingwakes an be treated as small perturbations. In thesteady ase, in fat, one wants to use small pertur-bations to get an aurate estimate of the gradient.The unsteady perturbation is also small beausethe level of unsteadiness in turbomahines is low.In both problems, the small size of the perturba-tions justi�es the linear analysis of the ow �eld.In the steady design problem, the perturbed ow�eld an be assumed to be a superposition of theunperturbed nonlinear ow �eld U and a small lin-ear perturbation u:U = U+ u (4)The periodi boundary onditions are the same asin the non-linear equations.In the unsteady ow ase, the time-periodiity ofthe unsteadiness makes possible an harmoni de-omposition of the ow �eld. The unsteady foresan be linearly deomposed into a sum of indepen-dent harmoni omponents. Thus, when onsid-ering a single harmoni omponent, the unsteadyow �eld U(t) an be assumed to be a superpo-sition of the steady nonlinear ow �eld U and thereal part of a small harmoni perturbation of knownfrequeny ! and unknown omplex amplitude u:U(t) = U+Rfexp (i!t) ug: (5)The periodi boundary onditions for the omplexamplitude u are more ompliated than in thesteady ase, due to the spei�ation of an inter-blade phase angle (IBPA). This is a omplex phaseshift exp(i') between the lower and upper peri-odi boundaries. In the fored response problem,it arises when the wakes and blades have di�er-ent pithes and therefore there is a di�erene inthe times at whih neighbouring wakes strike neigh-bouring bladesThe linearisation of both of the disrete steadyequations (2) and (3) and their unsteady ounter-parts leads to the linear system(I�B) (Lu� s) = 0; (6)B u = b: (7)The governing equations for the linear perturba-tions are formally idential in the steady and un-steady ase and L is a ombination of the lineari-sation matrix �N=�U giving the sensitivity of thedisrete nonlinear residualN to ow perturbations.In the steady ase, however, the equations are de-�ned in the real domain with zero frequeny andIBPA, whereas in the unsteady ase they are de-�ned in the omplex domain and L ontains alsoa omplex soure term due to the harmoni un-steadiness. The linear harmoni equations an be
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Fig. 1: Convergene histories of a turbine utterase in whih GMRES is used to stabilise an iter-ation, either from the original initial onditions orfrom a restartviewed as the frequeny domain ounterpart of thenon-linear unsteady equations.For visous walls, the wall veloity b is zerofor both steady perturbations and fored responsedue to inoming wakes. For invisid walls, how-ever, b is zero only in the fored response problem;the steady geometry perturbation rotates the unitnormal leading to a veloity perturbation in thenormal diretion.2 The soure term s is non-zeroover the whole omputational domain for steadyperturbations, as a onsequene of the grid defor-mation, whereas in the fored response analysis, itis zero throughout the ow �eld exept at the inowboundary where the spei�ation of the inomingwakes enters through the boundary uxes.These linear equations are again solved using the�ve-stage Runge-Kutta sheme together with Ja-obi preonditioning and multigrid. Usually thisonverges without diÆulty, but problems havebeen enountered in situations in whih the steadyow alulation itself failed to onverge to a steady-state but instead �nished in a low-level limit yle,often related to some physial phenomenon suh asvortex shedding at a blunt trailing edge. The or-responding instability in the linear alulation hasbeen dealt with by the use of GMRES, with theusual multigrid solver being used as a very e�e-tive preonditioner, as shown in Figure 1.The �nal output of the linear analysis is the vari-ation of the objet funtion orresponding to thepresribed perturbation, whih in general is a om-plex inner produt between a onstant vetor andthe linear solution: w = gHu (where gH denotesthe omplex onjugate transpose of g). The ele-ments of the vetor g are non-zero only at nodeswhere the objet funtion is de�ned, at the nodeson the outlet plane if the funtional is the mass3 of 7



ow and at the nodes on the blade surfae if thefuntional is the worksum.Adjoint AnalysisThe adjoint approah is founded on the observa-tion that if Au = f thenw = gHu = gHA�1 f = �(AH )�1g�H f = vH f ;(8)where v is the solution to the adjoint systemAHv = g: (9)This adjoint approah to evaluating the objetfuntion w is bene�ial when there is one g, orre-sponding to a single salar funtional, but severaldi�erent f vetors, orresponding to di�erent geo-metri design parameters in the steady ase and todi�erent shapes of the inoming wakes in the ase offored response. In this situation, the usual diretapproah would require a separate linear alula-tion for the perturbation of eah design parameteror for eah shape of the wake, whereas the adjointapproah needs just one adjoint alulation.To express the linear system of equations in therequired form, we add Equations (6) and (7) to give�(I�B)L+B� u = (I�B) s+ b: (10)The orresponding adjoint system of equations istherefore �LH(I�B) +B� v = g; (11)sine the real matrix B is symmetri. To implementthe adjoint method, it is onvenient to split v intotwo orthogonal omponents 1 using the fat that Bis idempotent (i.e. B2=B):v = vk+v?; vk = (I�B)v; v? = B v: (12)Multiplying Equation (11) by (I �B) yields theequation (I�B)LH vk = (I�B)g (13)whih an be solved together with the boundaryondition B vk = 0; (14)to determine vk. Multiplying Equation (11) by Byields v? = �BLH vk +Bg; (15)1The reason for the hoie of subsript label is that v?is the part of v whih is orthogonal to the null-spae of thematrix B, whereas vk is the part that lies within the null-spae.

so v? an be alulated in a post-proessing stepbefore then evaluating the linear funtional asw = vH f = vHk s+ vH?b: (16)This equation shows that vk gives the dependeneof the funtional on the distributed soure term s,whereas v? gives its dependene on the boundaryveloities b.It is not obvious how best to solve the adjointequations. Using the same iterative method as forthe nonlinear and linear equations (exept with thetranspose of the preonditioning matrix) was foundto work well for invisid ows, but there were sig-ni�ant stability problems with visous ows. Tooverome these, Giles analysed the iterative evolu-tion of output funtional. He found that the adjointode ould be designed to give exatly the same it-erative history for the funtionals as with the linearode, by properly onstruting an adjoint version ofthe usual Runge-Kutta time-marhing proedure,and using adjoint restrition and prolongation op-erators for the multigrid.5 This guarantees that thestability and the iterative onvergene rate of theadjoint ode will be idential to that of the linearode, whih in turn is equal to the asymptoti on-vergene rate of the nonlinear ode.
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LINSUB     Fig. 2: Complex omponents of the at plate pres-sure jump due to wake interationValidationOne diÆulty in the development of an adjointow ode is the lak of test ases for validation. Forthe adjoint ode, the validation has been performedat two levels. At the lower level, eah subroutinehas been heked for onsisteny with its ounter-part in the linear ode.6, 7 At the higher level, ithas been heked that the adjoint and linear odesprodue the same value for both the steady and un-steady funtionals, to within mahine auray, ateah step of the iterative proess. This exat equiv-alene is one advantage of the fully disrete adjoint4 of 7
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Fig. 3: First harmoni pressure variation for the11th Standard Con�gurationapproah, as opposed to the ontinuous adjoint ap-proah in whih one disretises the adjoint partialdi�erential equation.The linear ode has itself been validated at a sub-routine level by omparison with the subroutinesin the nonlinear ode.6, 7 In addition it has beenheked using a range of testases, starting withsimple model problems suh as invisid ow over2D at plate asades for whih there is an ana-lyti solution.18 Figure 2 presents results for theunsteady interation due to inoming wakes froman upstream blade row. Validation of the visousapabilities is based on benhmark experimentaltestases, suh as the 11th Standard Con�gura-tion.4 Figure 3 shows that the amplitude of thelinear pressure oeÆient variation agrees well withthe measurements.Example appliationsIn order to illustrate the eÆieny of the adjointapproah, the adjoint algorithm is applied here toa steady and an unsteady example. In the �rstase, the linear turbine asade shown in �gure 5with an exit Mah number of about 0:7 is used todetermine the sensitivities of the outlet mass owto the rotation of seleted blade-to-blade setionsaround the Leading Edge (LE), that is to variationsof the stagger angle . Positive inrements � leadto higher angles between the blade hord and theaxial diretion.Figure 4 shows the omparison between the non-linear and the linear/adjoint sensitivities of themass ow _m for variations of the stagger angle be-tween �5o and 7o. The urve of the non-linearsensitivity is made of 26 equally spaed points, eahreferring to a di�erent blade and the derivative isomputed with entred di�erenes on intervals of1o. There is a very good agreement in the inter-val between �5o and �3o. For higher inidenes,
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Fig. 4: Non-linear versus linear mass ow sensitiv-ities for variation of the stagger angle  of a 2Dturbine setionthe agreement worsens slightly, but the average dif-ferene remains within about 1%. The non-linearand linear sensitivities resulting from the pertur-bation of the base geometry are given in the �rstrow of table 1. For � > 5o, In the 3D ase, wehose to perturb the setion at midspan and at20 % blade height and the last two rows of table1 show the sensitivities for these two design pa-rameters. Surprisingly the agreement between thenonlinear and the linear/adjoint sensitivities is bet-ter near the end wall, where one would expet morenon-linearities due to 3D visous e�ets, than atmidspan, where the ow is leaner. Further inves-tigation is required on the origin of this di�erene.We emphasise, however, that a single alulation isrequired to determine the two sensitivities with theadjoint approah, whereas two non-linear or linearalulations are needed with the �nite-di�ereneapproah.
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nonlin. lin/adj2D 0.210026 0.207833D-mds 2.3974E-3 2.5639E-33D-edw 1.8373E-3 1.8336E-3Table 1: Non-linear versus linear mass ow sensi-tivities for a rotation of the turbine airfoil of 0:20around the LEThe unsteady appliation onsists of a high pres-sure turbine rotor subjet to unsteady aerodynamifores aused by inident wakes from an upstreamrow of blades. This has been previously analysed16and good agreement shown in the fored responsepredited by linear unoupled and nonlinear ou-pled methods.The design task is to investigate the dependeneof the fored vibration upon the shape of the in-oming wakes. In pratie, it is very diÆult tosigni�antly redue the veloity defet in the wakes,but by hanging the three-dimensional shape of theupstream blades (e.g. by moving the tip setionof the blade in the irumferential diretion whilekeeping the hub setion �xed, a proess known asre-staking) it is possible to alter the time at whihthe wake shed by the tip setion hits the rotor bladerow, relative to that shed from the hub setion.Physially, a wake hitting the blade at the sametime at di�erent radial setions will usually pro-due the maximum strutural response, whereasallowing for time delays there may our a phaseanellation between the fores at di�erent radialloations leading to a redued response.Mathematially, the e�et of re-staking is on-tained in the worksum alulation. The adjointanalysis an be used to determine the worksum val-ues orresponding to a set of di�erent inow wakeboundary onditions in order to identify a minimumresponse. In this example, these boundary ondi-tions ome from the same baseline orresponding tothe urrent design of the upstream blades and thedi�erene between them is a omplex phase shiftwhih is de�ned to vary linearly with radius fromzero at the hub to a maximum value at the tip. Thisorresponds to a linear re-staking, leaning the en-tire blade in the irumferential diretion.Figure 6 shows the magnitude of the worksumorresponding to the primary torsional mode om-puted as a funtion of the maximum phase shift dueto re-staking. It indiates that within the rangebeing onsidered, whih is thought to be appropri-ate, the greater the magnitude of the phase shift,the greater the degree of phase anellation betweendi�erent parts of the blade and hene the smallerthe worksum.
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Fig. 6: Fored response magnitude versus maxi-mum re-staking phase shift.The results for the full range of phase shifts wereobtained from a single adjoint alulation. If thestandard linear harmoni approah were used in-stead, eah result would require a separate linearalulation sine it orresponds to a di�erent setof inow boundary onditions. As a hek, linearalulations have been performed for a variety ofpoints and they produed idential values for theworksum output.ConlusionsThis paper has presented the appliation of theadjoint method for the steady and unsteady de-sign of turbomahinery blades. The latter one isthought to be the �rst appliation of adjoint meth-ods to the linearised analysis of periodi unsteadyows. Appliation of the adjoint tehnique to asteady design problem, onsisting in determiningthe gradient of a seleted funtional to variationsof geometri design variables and to an unsteadyone, involving the tailoring of inoming wakes toredue the level of fored response blade vibrationshave shown the e�etiveness of the approah. Theapability of determining the gradient of a salarobjet funtion depending on many design param-eters with a single alulation has a big potentialfor appliation to the design pratie in the turbo-mahinery industry.The development of the presented adjoint meth-ods has also involved advanes in the methodol-ogy for fully-disrete adjoint methods. This in-ludes the treatment of strong wall boundary on-ditions for node-based disretisations; adjoint itera-tion methods giving exatly the same iterative on-vergene as the orresponding linear method; andtehniques for the validation of the adjoint solver byheking its exat equivalene to the linear solver.The future work inludes further validation workon the omparison between non-linear and lin-ear/adjoint sensitivities for turbomahinery steady6 of 7
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