
Edge-based Multigrid schemes for Hybrid GridsJens-Dominik M�uller and Michael B. GilesOxford University Computing LaboratoryAbstractA Navier-Stokes multigrid method that has been developed for triangles and tetrahedra isextended to be used on hybrid grids. Various choices in extending the linear preserving uxcalculation of the simplex scheme are discussed and a exible way of expressing edge weightsis presented. An edge-collapsing algorithm that generates the coarser levels of hybrid gridsfor a multigrid algorithm is described.1 IntroductionCrumpton et. al. [2] have presented an unstructured triangular or tetrahedral multigridmethod for the Navier-Stokes equations. The solution is obtained with a node-centered�nite volume method that employs an edge based data structure. This data structure makesfor very e�cient programming. The implementation does not change for a 2D or 3D version.An important characteristic of the discretization is that all spatial operators are \linearpreserving" (LP). That is, a linear variation of a ux or state variable is integrated (ordi�erentiated) exactly on an arbitrary mesh. This property guarantees that the order ofaccuracy of the scheme is preserved on an irregular mesh, a highly stretched mesh or anadapted mesh. Consider a solution u that is stored at the nodes and varies linearly over eachelement (cf. �g. 1). A Galerkin discretization of the gradient on linear elements corresponds
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n_ 1,2Figure 1: Median dual around an internal node on a simplex (a) and a primitive grid (b).to a Green-Gau� integration around the neighboring nodes, which is LP by construction.Z
ru0dA =Xi 12(ui + ui+1)ni;i+1 =Xi 12(ui + u0) (ni�1;i + ni;i+1) (1.1)On a simplex mesh the integral around the neighboring nodes can be formulated equivalentlyaround the median dual volume, indicated by dashed lines in �gure 1. It can then be expressedas a sum over each edge connected to node i,Z
ru0dA =Xi 12(ui + u0) �ni� 12 + ni+ 12� : (1.2)Boundary terms have to be added for boundary faces of a simplex. This formulation can beused very e�ciently in the context of an edge based data structure. An extensive discussionof edge-based formulae for simplices has been presented by Barth [1].1



Edge-based Multigrid schemes for Hybrid Grids 2On a non-simplex mesh the Gau�-integration cannot be expressed on the edges of themesh. As can be seen from �gure 1, there exist neighboring nodes that are connected by acell, but not by an edge, e.g. the node diagonally opposite in a quadrilateral. Conversely,integration on just the edges as in eq. 1.2 is not LP except for regular meshes formed byparallelepipeds. In these cases errors of opposite edges cancel.A standard way to recover LP for non-simplex meshes, is to \triangulate" the \primitive".A primitive in our context is a quadrilateral in 2D, a pyramid, prism and a hexahedron in 3D.Triangulation here means the decomposition into triangles in 2D or tetrahedra in 3D. Thisapproach was also adopted in [2]. In the case of a quadrilateral this corresponds to changingthe bilinear variation over the element to a piecewise linear one with an arbitrary choice ofdiagonals. While this approach does recover LP, it is wrought with various di�culties. Thedecomposition is not possible in general, certain pathological cases cannot be triangulated.Furthermore, the triangulation adds diagonal edges also for regular primitives that are LP.Triangulation of a hexahedron, e.g., adds 4 edges per node to the 3 edges per node of thehexahedron. Thus the triangulation of a hexahedral grid approximately roughly doubles thecost of the calculation. Moreover, the orthogonality of quasi-structured, rectangular grids isdesirable for the calculation of boundary layers.In section 2 we propose an alternative way of integration over primitives that is LP. Thisapproach does not require the triangulation of all primitive elements. Diagonal edges areadded to the nodes where the integration turns out not to be LP. The weights on theseedges are formulated such that they can express a one-sided contribution as opposed to theanti-symmetric standard edges.Another key ingredient in [2] is an edge-collapsing multigrid algorithm, that generatescoarser levels starting from an arbitrary simplex grid of the �nest level. The basic algorithmis to collapse the two nodes of an edge into one and to retriangulate the cavity of all cellsthat were connected to the edge with that new node. Coloring of the nodes ensures thatspeci�ed coarsening ratios in isotropic and stretched regions are achieved. The cardinalityof the algorithm is optimal for simplex meshes in the sense that the ratio of number ofcells to nodes remains constant during the coarsening process. However, the straightforwardgeneralization to hybrid grids is not optimal in that sense: the retriangulation of the cavitywill replace hexahedra with pyramids and tetrahedra. Since a tetrahedral grid has morethan twice as many edges per node than a hexahedral grid, a semi-coarsening of a regularhexahedral region would decrease the number of nodes by a factor of 2, but would not decreasethe number of edges to be computed. Furthermore the algorithm of [2] does not recover theregularity of the mesh on a coarser level.The hybrid edge-collapsing algorithm proposed in section 3 is designed to avoid theseproblems. This is done by considering primarily the graph problem of nodes connected byedges. Collapsing edges is then constrained by not allowing neighboring edges to exceed acertain factor of their initial length, usually the double. Partially collapsed elements thathave not completely disappeared have to be considered.2 Spatial DiscretizationAs shown in section 1, the loss of linearity preservation can be viewed as an e�ect of thedecoupling of nodes that do not have an edge in common, such as the node diagonally oppositein a quadrilateral. If the geometry is regular, such as a node surrounded by parallelepipeds,the errors associated with the simpli�ed quadrature cancel and a simple integration is LP.There is no need to triangulate these elements. In a typical application of hybrid grids, aow simulation with boundary layers, about half the elements will be in the boundary layer.



Edge-based Multigrid schemes for Hybrid Grids 3Most of these elements will be very orthogonal hexahedra, only the elements on the boundaryand on the hybrid interface will require modi�cation.2.1 Symmetric EdgesThe simple edge-weights a, as they are used in simplex implementations, are anti-symmetric.That is, the contribution of the edge appears with opposite signs at either end, ensuringconservation by construction.Airui  Airui + aij 12(ui + uj); Ajruj  Ajruj � aij 12(ui + uj) (2.1)In order to obtain complete exibility in setting up the quadrature around the median dual,we de�ne a new type of edge that brings a symmetric contribution s to both nodes.Airui  Airui + sij 12(ui + uj); Ajruj  Ajruj + sij 12(ui + uj) (2.2)We can express any contribution from the node j on one end of the edge to node i on theother with a combination of the two types of weights. Note that conservation is no moreguaranteed by construction, but has to be provided by other symmetric edges. While theform of eqs. 2.1, 2.2 is computationally very e�cient, it is conceptually easier to calculate theweights as two one-sided weights from i! j, wij , and j ! i , wji, and to convert it to a; s.a = 12(wij �wji); s = 12(wij +wji) (2.3)The calculation of the weights wij and wji can be done straightforwardly. Consideringin �gure 1(b) the right half of the edge 0! 3, e3� 12 , one can de�ne the bilinear interpolationvalue that is LP for a trapezium rule integration at that edge,u3� 12 = 12 �12(u0 + u3) + 14(u0 + u1 + u2 + u3)� : (2.4)The edges 0! 1 and 0! 3 exist as simple edges, the diagonal edge 0! 2 and the \reex"edge 0! 0 have to be added. The edge-based data structure only knows about connectionsbetween two nodes at a time. We have to scatter the contribution from edge e3� 12 to each ofthe four contributing edges,w00 w00 + 12(12 + 14)n3� 12 ; w01  w01 + 12(14)n3� 12 ; (2.5)w02 w02 + 12(14)n3� 12 ; w03  w03 + 12(12 + 14)n3� 12 : (2.6)For the receiving end at node 3 we �nd the same contributions with the opposite sign, thusthe integration is conservative. The edge 1! 3 will have to be created as well. The extensionto three dimensions is straightforward once a suitable interpolation over the element has beende�ned.In the example above we have chosen to interpolate the the unknown bilinearly overthe quadrilateral. This interpolation involves both diagonal edges in the element, 0 ! 2and 1 ! 3. However, we are only interested in recovering a linear function which canbe expressed exactly on two triangles de�ned over the quadrilateral with either diagonal.Selecting e.g. 0! 2, we �nd the interpolation valueu3� 12 = 12 �12(u0 + u3) + 12(u0 + u2)� : (2.7)



Edge-based Multigrid schemes for Hybrid Grids 4The diagonal edge 1 ! 3 does not appear. This choice does introduce some bias into thegrid, but can o�er signi�cant savings in 3D. E.g. a trilinear interpolation over a hexahedronrequires all nodes of the hexahedron to be connected to each other with an edge. Thisgenerates 8 additional edges per node, while a simplex decomposition or a piecewise linearinterpolation only add 4 diagonal edges. Note that with all choices of interpolation schemes,the geometry of the dual volume will keep its desirable rectangular shape. This is not thecase with the `real' triangulation of [2].2.2 Finding non-LP edgesIt remains to be addressed how to select the faces of the median dual that need to be treatedLP. Since we would like to use the simple integration as much as possible, we start out bycalculating non-LP weights in all non-simplex elements. Boundary faces have to be treatedLP in any case. We can then check the accuracy of our interpolation by calculating gradientsof unit magnitude in each coordinate direction, ui = xi; yi; zi. The accuracy of the currentintegration is evaluated by comparing ryi=rxi and rzi=rxi. All nodes that do not have aset of su�ciently accurate weights are identi�ed.It is rather involved to �nd out which edge introduces the error, and which edge has itserror canceled by the error of another edge as is the case in regular grids. We thus proceedto \upgrade" to LP all edges of primitive elements that are formed with this node. Thisprocedure gives rise to some propagation: conservation requires that the integration for thethe node at the other end of the edge is treated symmetrically. Since this in turn can removeerror cancellation for the neighboring node, the upgrade can propagate.Table 2.2 shows the number of added edges for a hybrid grid around a RAE 2822 airfoilwith a tolerance �xed at 1 %. Three successively coarser grids are considered with about halfthe elements being quadrilaterals in the viscous layer. A close-up of the �nest grid can seen in�gure 5. Bilinear integration for LP-quadrilaterals has been chosen. The rightmost columntris quads antim., symm., bnd. Edges added Eg./quad10692 13647 46817 5948 266 .3973788 3452 14288 2783 138 .7261520 884 3024 1412 72 1.43Table 1: Number of added edges for hybrid grids around a RAE 2822, LP-tolerance at 1 %.lists the number of added edges normalized by the number of quadrilaterals. Triangulationto simplices would have added one edge per quadrilateral. The selective approach generatesin general fewer edges than a complete triangulation, except for the coarsest grid. Note thatreverting to a piecewise linear interpolation adds only one edge per quadrilateral, rather thanthe two added in the bilinear case.Tolerance antim. symm. Edges added Eg./quad.1 9156 1805 .300.05 12640 6057 1.34.01 16196 8596 1.96.001 16528 8665 1.97Table 2: Added edges in a structured grid for a NACA 0012, varying LP tolerance.Table 2.2 shows the number of added edges for a structured 128x33 C-type grid arounda NACA 0012 airfoil with varying tolerance. The mesh contains 4096 quadrilaterals and 288boundary edges.



Edge-based Multigrid schemes for Hybrid Grids 5Details of the corresponding meshes are shown in �gure 2 With the largest tolerance of
Figure 2: Added edges in a quad. mesh to achieve LP. Tolerance .1, .05, .01, from left.a 10 % error in gradient calculation, there are essentially only boundary edges that are �xedup. All the quadrilaterals on the boundaries carry the two diagonal edges. Increasing thetolerance quickly leads to a grid that prescribes the more costly LP integration for nearly allcells. Computational experiments are being currently undertaken to investigate the inuenceof the LP threshold on the accuracy of the solution.3 Edge-collapsing MultigridThe new edge-collapsing algorithm that we propose works primarily on the graph of themesh. In this graph, any edge can be collapsed if after the collapse the geometry is stillvalid and none of the neighboring edges exceeds a maximum length it has been allowed. The�rst criterion is obvious, we cannot tolerate negative volumes due to folded grids. The secondcriterion expresses the design principle of multigrid, usually the coarse grid doubles the lengthof the edges in a mesh.

Figure 3: Collapsing edges on a hexahedron.The implementation of this algorithm for isotropic meshes is straightforward. Given a�ne mesh, we tag each edge with its length times a growth factor, say 2, as maximum length.The edges are then sorted in a heap list for shortest edge-length and we try to collapse theshortest edge. With a list of edges that is addressed by node numbers, the length test canbe executed as a O(1) operation. Similarly, we construct a list of elements addressed bynodes to perform the geometry test. Fixing a certain maximum angle for the elements inthe collapsed geometry, say 135�, guarantees a minimum quality of the coarser mesh as wellas positive volumes. This test is done by looping over all elements that are formed with thecollapsed edge and considering the \remaining" element. Other edges on these elements mayhave been collapsed in earlier steps. E.g. a quadrilateral with one collapsed edge becomes atriangle, a doubly collapsed quadrilateral vanishes. Various collapsed shapes derived from ahexahedron are shown in �gure 3. The algorithm terminates once there are no edges left tobe collapsed. All remaining elements and nodes are then identi�ed and a coarsened grid is



Edge-based Multigrid schemes for Hybrid Grids 6created. A sequence of three levels of a triangular grid around a NACA 0012 with initially11400 triangles is shown in �gure 4.
Figure 4: Coarsening a triangular grid around a NACA 0012.The algorithm as described above for the isotropic case will overcoarsen anisotropic gridswith a high gradation as is typically found in boundary layers. Larger edges have to beprevented from \eating" the smaller ones that limit the coarsening. This is achieved byidentifying short edges in stretched regions. A �rst criterion is that these edges are shorterby a given factor, say 3, compared to the largest neighboring edge. Additionally we requirethat there is at least one other neighboring edge that is short and points into the samedirection. This criterion ensures that single short edges in very irregular unstructured gridsare not considered stretched.

Figure 5: Coarsening a hybrid grid around a RAE 2822.Starting with the shortest stretched edge, the string of short edges is followed in bothdirections of the edge. Keeping the shortest edge, every other edge in the string is collapsedonto the outward end, and all neighboring long edges are given a maximum length thatprohibits any further collapse in the region. Once the stretched regions have been directionallycoarsened in this way, the isotropic process collapses the rest of the domain. Figure 5 showsa sequence of collapses for a hybrid grid around a RAE 2822 airfoil. It can be seen that thestretched part of the grid close to the airfoil remains regular and is coarsened exactly 1:2.The outer part of the structured region which is not stretched loses some regularity and thequadrilaterals collapse into larger quadrilaterals and triangles.Table 3 shows the coarsening ratios of the two examples. The length ratio has been �xedat 2.2, the maximum angle at 135�. This angular tolerance is quite low, the speci�ed valueis often considered acceptable even for the �nest grid. As can be seen, there is a trade-o�



Edge-based Multigrid schemes for Hybrid Grids 7tri. ratio tri. quad. elements tri. quad. total ratio11400 1. 10692 13647 24339 1. 1. 1.4300 .37 5527 5957 11484 .54 .44 .471900 .44 2795 2733 5528 .51 .45 .471100 .57 1599 1295 2894 .57 .48 .52700 .64 1053 672 1725 .65 .51 .60400 .57 832 291 1123 .79 .43 .65651 50 701 .78 .17 .64Table 3: Coarsening ratios for a tri. NACA 0012 on the left, hybrid RAE 2822 on the right.between the desired coarsening ratio, ideally 1:4 on a 2-D isotropic grid, and the quality onthe coarser meshes. Numerical experiments will show how much grid quality is needed onthe coarser levels.The hybrid example exhibits a perfect coarsening ratio in the structured part. The coars-ening ratio is slightly below 1:2 since some of the quadrilaterals at the outer, non-stretchedpart collapse into triangles. The coarsening ratio on the triangles is again rather high be-cause of the strict angular tolerance. Coarsening is also restricted by the perimeter of thestructured layer which always carries the same number of nodes, coarsening happens onlynormal to the airfoil surface. Furthermore, partly collapsed quadrilaterals add to the numberof triangles.4 ConclusionsA exible way of de�ning edge weights for edge-based solvers on hybrid grids has been de-veloped. It allows to choose an appropriate trade-o� between accuracy, namely a gradientoperator is linear preserving on an arbitrary mesh, and cost in the form of added edges thathave to be computed. While the choice of integration is local, conservation leads to a propa-gation of the more accurate treatment over large parts of the domain when a more stringenttolerance for the linearity preservation is chosen. Numerical experiments will have to showthe inuence of the tolerance on the solution accuracy.An edge-collapsing algorithm to generate coarsened meshes for multigrid methods hasbeen developed that can deal with arbitrary meshes. The method applies directional coars-ening in stretched regions and preserves the regularity of the mesh there. Grid quality onthe coarser meshes can be guaranteed at the price of an increase of the coarsening ratio.Two-dimensional examples are shown.References[1] T.J. Barth. Aspects of unstructured grids and Finite-Volume solvers for the Euler andNavier-Stokes equations. In Special Course on Unstructured Grid Methods for AdvectionDominated Flows, Neuilly sur Seine, France, May 1992. AGARD. Report 787.[2] P.I. Crumpton, P. Moinier, and M.B. Giles. An unstructured algorithm for high Reynoldsnumber ows on highly-stretched grids. In C. Taylor and J.T. Cross, editors, NumericalMethods in Laminar and Turbulent Flow, pages 561{572. Pineridge Press, 1997.


