
The Harmoni Adjoint Approah toUnsteady Turbomahinery DesignM. C. Duta M. B. Giles M. S. CampobassoOxford University Computing Laboratory1 IntrodutionModern turbomahinery has to meet exating standards of eÆieny resulting in low weightand highly loaded engine omponents. As a onsequene, high yle fatigue due to mehanialvibration aused by unsteady aerodynami fores has beome an important onern to beaddressed at an early stage of the engine design yle. Over the past two deades, a number ofaeroelastiity methods have emerged to address this need varying from unoupled linearisedpotential ow solvers [16, 7℄ to fully-oupled nonlinear three-dimensional unsteady visousmethods [12℄. Within this range, the unoupled linear harmoni Euler and Navier-Stokesmethods have proved to be a suessful ompromise between auray and ost and arenow widely preferred in industry as a fast, aurate tool for aeroelasti preditions. Indeed,a growing body of evidene indiates that linear visous alulations are adequate for asurprisingly large range of appliations [15, 9, 1℄. For the predition of the level of struturalvibrations, the most important output from suh linear unsteady analyses is a quantity knownas the \worksum" [2℄. In the ontext of Lagrangian mehanis, the worksum orresponds tothe generalised fore due to the linear unsteady aerodynamis ating on a partiular struturalmode of vibration.This paper demonstrates how the worksum output produed by the linear harmoni owanalysis an be obtained by an adjoint harmoni analysis whih, under ertain onditions,is a more eÆient alternative to the usual linear approah. The adjoint approah has beendeveloped for aeronautial optimal design by Jameson [10, 11℄. At eah optimisation step, asingle adjoint ow alulation determines the sensitivity of a steady-state funtional (e.g. liftor drag) to a large number of geometri design parameters. The same idea is applied inthis paper in the ontext of linear unsteady ow analysis, to ompute the worksum valuesorresponding to any input unsteady ow perturbations, whereas the usual approah wouldrequire a separate linear unsteady ow alulation for eah set of inputs.2 Nonlinear Flow AnalysisWe begin with the disrete nonlinear analysis of the time-averaged turbulent ow within asingle turbomahinery blade row in its frame of referene (i.e. stationary for a stator, rotatingfor a rotor). The ow is desribed by the Reynolds{averaged Navier{Stokes equations oupledwith the Spalart{Allmaras turbulene model. Due to rotation, entrifugal and Coriolis soureterms appear in the momentum equations. The analysis omputes the vetor U of primitiveow variables (inluding the turbulene variables) orresponding to a omputational gridwith nodal oordinates X, on whih the nonlinear ow equations an be expressed asN(U;X) = 0: (2.1)The vetor N represent the spatially disretised residuals, a nonlinear funtion of the disreteow variables and, due to the disretisation, also a funtion of the grid node oordinates.1



2 Duta, Giles & CampobassoBeause the governing equations are approximated on an unstrutured grid using an edge-based algorithm [13, 14℄, the residual vetor N is a sum of ontributions from all of the edgesof the grid, with eah edge ontributing only to the residuals orresponding to the two nodesat either end.For turbomahinery, the boundary onditions are of three types; inow/outow, periodiand wall. The inow and outow boundaries are handled through uxes whih inorporatethe appropriate far-�eld information. Thus these boundary onditions beome part of theresidual vetor N. Periodiity is treated very simply through the use of mathing pairs ofperiodi nodes, one on the lower periodi boundary and one on the upper periodi boundary,at whih the ow is de�ned to be idential apart from the appropriate rotation of the veloityvetors to aount for the annular nature of the turbomahinery ow domain. By ombiningux residuals at the two periodi nodes in an appropriate manner to maintain periodiity, thisboundary ondition again just requires minor hanges to the de�nition of the ux residualvetor N. Further details are given in referenes [13, 2℄.It is the wall boundary ondition whih requires a more substantial hange in the form ofthe disrete equations. For visous ows, a no-slip boundary ondition is applied by disardingthe momentum residuals and replaing these equations by the spei�ation of zero veloityat the boundary nodes. For invisid ows, the formulation of the ux residuals for boundarynodes is based on zero mass ux through the boundary fae, but in addition ow tangenyis enfored by setting the normal omponent of the surfae veloity to zero, disregarding thenormal omponent of the momentum residuals.These strong wall boundary onditions, in whih one or more omponents of the mo-mentum residuals are disarded and replaed by the spei�ation of orresponding veloityomponents, an be expressed as (I�B) N(U;X) = 0; (2.2)B U = 0: (2.3)Here B is a projetion matrix whih extrats the momentum/veloity omponents at the wallboundaries.These equations are solved using a �ve-stage Runge-Kutta sheme, with a Jaobi preon-ditioner and multigrid to aelerate onvergene [13, 14℄.3 Linear Harmoni AnalysisThe isolated engine blade row is subjet to two soures of small harmoni perturbations. The�rst soure is the mehanial vibration of the blade assembly ourring in the study of theutter properties of blade assembly. The seond is the presene of irularly periodi non-uniformities of the ow whih are steady in the frame of referene of a blade row immediatelyupstream or downstream of the blade row being modelled. Due to the relative motion ofthe two rows, in the frame of referene of the latter these non-uniformities beome harmoniperturbations to the inow (or outow) boundary onditions. Physially, these perturbationsorrespond to inident wakes from upstream, or irumferential pressure variations at eitherthe inow or the outow.The linear harmoni analysis of turbomahinery gas ow is justi�ed by both the relativelylow levels and the time-periodiity of the ow unsteadiness. The �rst property allows theunsteadiness to be modelled as a linear perturbation, and the seond enables it to be linearlydeomposed into a sum of independent harmoni omponents. Thus, when onsidering asingle harmoni omponent, the unsteady ow �eld U an be assumed to be a superposition
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Figure 1: Convergene histories of a turbine utter ase in whih GMRES is used to stabilisean iteration, either from the original initial onditions or from a restartof the steady nonlinear ow �eld U and the real part of a small harmoni perturbation ofknown frequeny ! and unknown omplex amplitude u:U(t) = U+Rfexp (i!t) ug: (3.1)The periodi boundary onditions for the omplex amplitude u are more ompliatedthan in the steady ase, due to the spei�ation of an inter-blade phase angle (IBPA). This isa omplex phase shift exp(i') between the lower and upper periodi boundaries. In utter,this orresponds to a �xed phase shift between the osillations of neighbouring blades. Infored response, it arises when the wakes and blades have di�erent pithes and therefore thereis a di�erene in the times at whih neighbouring wakes strike neighbouring bladesWhen the disrete equations of motion are linearised, one obtains a frequeny-domainlinear version of the ow equation (2.2) and solid wall boundary ondition (2.3):(I�B) (Lu� s) = 0; (3.2)B u = b: (3.3)L is a ombination of the linearisation matrix �N=�U giving the sensitivity of the disretenonlinear residual N to ow perturbations, plus a omplex soure term due to the harmoniunsteadiness. In the ase of fored response due to inoming wakes, the wall veloity b iszero, and the soure term s is zero throughout the ow �eld exept at the inow boundarywhere the spei�ation of the inoming wakes enters through the boundary uxes. In thease of utter, the wall veloity b is non-zero, and the use of a harmonially deforming gridmoving with the blades leads to s being non-zero at all nodes [8℄.These linear equations are again solved using the �ve-stage Runge-Kutta sheme togetherwith Jaobi preonditioning and multigrid. Usually this onverges without diÆulty, butproblems have been enountered in situations in whih the steady ow alulation itselffailed to onverge to a steady-state but instead �nished in a low-level limit yle, oftenrelated to some physial phenomenon suh as vortex shedding at a blunt trailing edge. Theorresponding instability in the linear alulation has been dealt with by the use of GMRES,with the usual multigrid solver being used as a very e�etive preonditioner, as shown inFigure 1.In aeroelasti appliations, the �nal output of the linear harmoni analysis is the worksum[2℄ whih is a omplex inner produt between a onstant vetor and the linear harmoni



4 Duta, Giles & Campobassosolution: w = gHu (where gH denotes the omplex onjugate transpose of g). The elementsof the vetor g are non-zero only at nodes on the blade surfae where g depends on themode of blade vibration. In a linear utter analysis, the worksum value is a measure ofthe mehanial work done on the vibrating blade by the aerodynami fores generated bythe vibration itself. In the fored response analysis, the magnitude of the worksum value isdiretly proportional to the amplitude of blade vibration indued by the ow perturbations.4 Adjoint Harmoni AnalysisThe adjoint harmoni approah is founded on the observation that if Au = f thenw = gHu = gHA�1 f = �(AH)�1g�H f = vH f ; (4.1)where v is the solution to the adjoint systemAHv = g: (4.2)This adjoint approah to evaluating the worksum w is bene�ial when there is one g, orre-sponding to a single vibration mode, but several di�erent f vetors, orresponding to di�erentinoming wakes in the ase of fored response. In this situation, the usual diret approahwould require a separate linear alulation for eah wake, whereas the adjoint approah needsjust one adjoint alulation.To express the linear system of equations in the required form, we add Equations (3.2)and (3.3) to give �(I�B)L+B� u = (I�B) s+ b: (4.3)The orresponding adjoint system of equations is therefore�LH(I�B) +B� v = g; (4.4)sine the real matrix B is symmetri. To implement the adjoint method, it is onvenient tosplit v into two orthogonal omponents 1 using the fat that B is idempotent (i.e. B2=B):v = vk + v?; vk = (I�B)v; v? = B v: (4.5)Multiplying Equation (4.4) by (I�B) yields the equation(I�B)LH vk = (I�B)g (4.6)whih an be solved together with the boundary onditionB vk = 0; (4.7)to determine vk. Multiplying Equation (4.4) by B yieldsv? = �BLH vk +Bg; (4.8)so v? an be alulated in a post-proessing step before then evaluating the worksum asw = vH f = vHk s+ vH?b: (4.9)1The reason for the hoie of subsript label is that v? is the part of v whih is orthogonal to thenull-spae of the matrix B, whereas vk is the part that lies within the null-spae.
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LINSUB     Figure 2: Complex omponents of the at plate pressure jump due to wake interationThis equation shows that vk gives the dependene of the worksum on the distributed harmonisoure term s, whereas v? gives its dependene on the boundary veloities b.It is not obvious how best to solve the adjoint equations. Using the same iterative methodas for the nonlinear and linear equations (exept with the transpose of the preonditioningmatrix) was found to work well for invisid ows, but there were signi�ant stability problemswith visous ows. To overome these, Giles analysed the iterative evolution of outputfuntionals suh as the worksum produt. He found that the adjoint ode ould be designedto give exatly the same iterative history for the funtionals as with the linear ode, byproperly onstruting an adjoint version of the usual Runge-Kutta time-marhing proedure,and using adjoint restrition and prolongation operators for the multigrid [4℄. This guaranteesthat the stability and the iterative onvergene rate of the adjoint ode will be idential tothat of the linear ode, whih in turn is equal to the asymptoti onvergene rate of thenonlinear ode.5 ValidationOne diÆulty in the development of an adjoint ow ode is the lak of test ases for validation.For the harmoni adjoint ode, the validation has been performed at two levels. At thelower level, eah subroutine has been heked for onsisteny with its ounterpart in thelinear harmoni ode [6, 5℄. At the higher level, it has been heked that the adjoint andlinear harmoni odes produe the same value for the worksum output, to within mahineauray, at eah step of the iterative proess. This exat equivalene is one advantage of thefully disrete adjoint approah, as opposed to the ontinuous adjoint approah in whih onedisretises the adjoint partial di�erential equation.The linear harmoni ode has itself been validated at a subroutine level by omparisonwith the subroutines in the nonlinear ode [6, 5℄. In addition it has been heked using arange of testases, starting with simple model problems suh as invisid ow over 2D atplate asades for whih there is an analyti solution [17℄. Figure 2 presents results for theunsteady interation due to inoming wakes from an upstream blade row. Validation of thevisous apabilities is based on benhmark experimental testases, suh as the 11th Stan-dard Con�guration [3℄. Figure 3 shows that the amplitude of the linear pressure oeÆientvariation agrees well with the measurements.
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Figure 3: First harmoni pressure variation for the 11th Standard Con�guration6 Example appliationThe adjoint harmoni algorithm is applied here to a realisti design senario to illustrate theeÆieny of the adjoint approah. The geometry is a high pressure turbine rotor subjet tounsteady aerodynami fores aused by inident wakes from an upstream row of blades. Thishas been previously analysed [15℄ to show good agreement in the fored response preditedby linear unoupled and nonlinear oupled methods.The design task is to investigate the dependene of the fored vibration upon the shape ofthe inoming wakes. In pratie, it is very diÆult to signi�antly redue the veloity defetin the wakes, but by hanging the three-dimensional shape of the upstream blades (e.g. bymoving the tip setion of the blade in the irumferential diretion while keeping the hubsetion �xed, a proess known as re-staking) it is possible to alter the time at whih thewake shed by the tip setion hits the rotor blade row, relative to that shed from the hubsetion. Physially, a wake hitting the blade at the same time at di�erent radial setions willusually produe the maximum strutural response, whereas allowing for time delays theremay our a phase anellation between the fores at di�erent radial loations leading to aredued response.Mathematially, the e�et of re-staking is ontained in the worksum alulation. Theadjoint analysis an be used to determine the worksum values orresponding to a set ofdi�erent inow wake boundary onditions in order to identify a minimum response. In thisexample, these boundary onditions ome from the same baseline orresponding to the urrentdesign of the upstream blades and the di�erene between them is a omplex phase shift whihis de�ned to vary linearly with radius from zero at the hub to a maximum value at the tip. Thisorresponds to a linear re-staking, leaning the entire blade in the irumferential diretion.Figure 4 shows the magnitude of the worksum orresponding to the primary torsionalmode omputed as a funtion of the maximum phase shift due to re-staking. It indiatesthat within the range being onsidered, whih is thought to be appropriate, the greater themagnitude of the phase shift, the greater the degree of phase anellation between di�erentparts of the blade and hene the smaller the worksum.The results for the full range of phase shifts were obtained from a single adjoint alulation.
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Figure 4: Fored response magnitude versus maximum re-staking phase shift.If the standard linear harmoni approah were used instead, eah result would require aseparate linear alulation sine it orresponds to a di�erent set of inow boundary onditions.As a hek, linear alulations have been performed for a variety of points and they produedidential values for the worksum output.7 ConlusionsThis paper has presented what is thought to be the �rst appliation of adjoint methods to thelinearised analysis of periodi unsteady ows. The urrent appliation is to a turbomahinerydesign problem involving the tailoring of inoming wakes to redue the level of fored responseblade vibration. However, a future appliation will be to utter predition and the design ofblades with improved utter margins.The development of the harmoni adjoint method, and parallel work on a steady-stateadjoint method, has also involved advanes in the methodology for fully-disrete adjointmethods. This inludes the treatment of strong wall boundary onditions for node-baseddisretisations; adjoint iteration methods giving exatly the same iterative onvergene asthe orresponding linear method; and tehniques for the validation of the adjoint solver byheking its exat equivalene to the linear solver.AknowledgementsThis researh has been supported by the Engineering and Physial Sienes Researh Counilunder grant GR/L95700, and by Rolls-Roye pl (tehnial monitor: Leigh Lapworth) DERA(tehnial monitor: John Calvert), and BAESystems pl (tehnial monitor: David Stand-ingford). We also aknowledge the ontributions of P. Moinier, J.-D. M�uller, N.A. Piere,L. Lapworth and M. West to the development of the HYDRA suite of nonlinear, linear andadjoint odes.
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