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tionModern turboma
hinery has to meet exa
ting standards of eÆ
ien
y resulting in low weightand highly loaded engine 
omponents. As a 
onsequen
e, high 
y
le fatigue due to me
hani
alvibration 
aused by unsteady aerodynami
 for
es has be
ome an important 
on
ern to beaddressed at an early stage of the engine design 
y
le. Over the past two de
ades, a number ofaeroelasti
ity methods have emerged to address this need varying from un
oupled linearisedpotential 
ow solvers [16, 7℄ to fully-
oupled nonlinear three-dimensional unsteady vis
ousmethods [12℄. Within this range, the un
oupled linear harmoni
 Euler and Navier-Stokesmethods have proved to be a su

essful 
ompromise between a

ura
y and 
ost and arenow widely preferred in industry as a fast, a

urate tool for aeroelasti
 predi
tions. Indeed,a growing body of eviden
e indi
ates that linear vis
ous 
al
ulations are adequate for asurprisingly large range of appli
ations [15, 9, 1℄. For the predi
tion of the level of stru
turalvibrations, the most important output from su
h linear unsteady analyses is a quantity knownas the \worksum" [2℄. In the 
ontext of Lagrangian me
hani
s, the worksum 
orresponds tothe generalised for
e due to the linear unsteady aerodynami
s a
ting on a parti
ular stru
turalmode of vibration.This paper demonstrates how the worksum output produ
ed by the linear harmoni
 
owanalysis 
an be obtained by an adjoint harmoni
 analysis whi
h, under 
ertain 
onditions,is a more eÆ
ient alternative to the usual linear approa
h. The adjoint approa
h has beendeveloped for aeronauti
al optimal design by Jameson [10, 11℄. At ea
h optimisation step, asingle adjoint 
ow 
al
ulation determines the sensitivity of a steady-state fun
tional (e.g. liftor drag) to a large number of geometri
 design parameters. The same idea is applied inthis paper in the 
ontext of linear unsteady 
ow analysis, to 
ompute the worksum values
orresponding to any input unsteady 
ow perturbations, whereas the usual approa
h wouldrequire a separate linear unsteady 
ow 
al
ulation for ea
h set of inputs.2 Nonlinear Flow AnalysisWe begin with the dis
rete nonlinear analysis of the time-averaged turbulent 
ow within asingle turboma
hinery blade row in its frame of referen
e (i.e. stationary for a stator, rotatingfor a rotor). The 
ow is des
ribed by the Reynolds{averaged Navier{Stokes equations 
oupledwith the Spalart{Allmaras turbulen
e model. Due to rotation, 
entrifugal and Coriolis sour
eterms appear in the momentum equations. The analysis 
omputes the ve
tor U of primitive
ow variables (in
luding the turbulen
e variables) 
orresponding to a 
omputational gridwith nodal 
oordinates X, on whi
h the nonlinear 
ow equations 
an be expressed asN(U;X) = 0: (2.1)The ve
tor N represent the spatially dis
retised residuals, a nonlinear fun
tion of the dis
rete
ow variables and, due to the dis
retisation, also a fun
tion of the grid node 
oordinates.1



2 Duta, Giles & CampobassoBe
ause the governing equations are approximated on an unstru
tured grid using an edge-based algorithm [13, 14℄, the residual ve
tor N is a sum of 
ontributions from all of the edgesof the grid, with ea
h edge 
ontributing only to the residuals 
orresponding to the two nodesat either end.For turboma
hinery, the boundary 
onditions are of three types; in
ow/out
ow, periodi
and wall. The in
ow and out
ow boundaries are handled through 
uxes whi
h in
orporatethe appropriate far-�eld information. Thus these boundary 
onditions be
ome part of theresidual ve
tor N. Periodi
ity is treated very simply through the use of mat
hing pairs ofperiodi
 nodes, one on the lower periodi
 boundary and one on the upper periodi
 boundary,at whi
h the 
ow is de�ned to be identi
al apart from the appropriate rotation of the velo
ityve
tors to a

ount for the annular nature of the turboma
hinery 
ow domain. By 
ombining
ux residuals at the two periodi
 nodes in an appropriate manner to maintain periodi
ity, thisboundary 
ondition again just requires minor 
hanges to the de�nition of the 
ux residualve
tor N. Further details are given in referen
es [13, 2℄.It is the wall boundary 
ondition whi
h requires a more substantial 
hange in the form ofthe dis
rete equations. For vis
ous 
ows, a no-slip boundary 
ondition is applied by dis
ardingthe momentum residuals and repla
ing these equations by the spe
i�
ation of zero velo
ityat the boundary nodes. For invis
id 
ows, the formulation of the 
ux residuals for boundarynodes is based on zero mass 
ux through the boundary fa
e, but in addition 
ow tangen
yis enfor
ed by setting the normal 
omponent of the surfa
e velo
ity to zero, disregarding thenormal 
omponent of the momentum residuals.These strong wall boundary 
onditions, in whi
h one or more 
omponents of the mo-mentum residuals are dis
arded and repla
ed by the spe
i�
ation of 
orresponding velo
ity
omponents, 
an be expressed as (I�B) N(U;X) = 0; (2.2)B U = 0: (2.3)Here B is a proje
tion matrix whi
h extra
ts the momentum/velo
ity 
omponents at the wallboundaries.These equations are solved using a �ve-stage Runge-Kutta s
heme, with a Ja
obi pre
on-ditioner and multigrid to a

elerate 
onvergen
e [13, 14℄.3 Linear Harmoni
 AnalysisThe isolated engine blade row is subje
t to two sour
es of small harmoni
 perturbations. The�rst sour
e is the me
hani
al vibration of the blade assembly o

urring in the study of the
utter properties of blade assembly. The se
ond is the presen
e of 
ir
ularly periodi
 non-uniformities of the 
ow whi
h are steady in the frame of referen
e of a blade row immediatelyupstream or downstream of the blade row being modelled. Due to the relative motion ofthe two rows, in the frame of referen
e of the latter these non-uniformities be
ome harmoni
perturbations to the in
ow (or out
ow) boundary 
onditions. Physi
ally, these perturbations
orrespond to in
ident wakes from upstream, or 
ir
umferential pressure variations at eitherthe in
ow or the out
ow.The linear harmoni
 analysis of turboma
hinery gas 
ow is justi�ed by both the relativelylow levels and the time-periodi
ity of the 
ow unsteadiness. The �rst property allows theunsteadiness to be modelled as a linear perturbation, and the se
ond enables it to be linearlyde
omposed into a sum of independent harmoni
 
omponents. Thus, when 
onsidering asingle harmoni
 
omponent, the unsteady 
ow �eld U 
an be assumed to be a superposition
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Figure 1: Convergen
e histories of a turbine 
utter 
ase in whi
h GMRES is used to stabilisean iteration, either from the original initial 
onditions or from a restartof the steady nonlinear 
ow �eld U and the real part of a small harmoni
 perturbation ofknown frequen
y ! and unknown 
omplex amplitude u:U(t) = U+Rfexp (i!t) ug: (3.1)The periodi
 boundary 
onditions for the 
omplex amplitude u are more 
ompli
atedthan in the steady 
ase, due to the spe
i�
ation of an inter-blade phase angle (IBPA). This isa 
omplex phase shift exp(i') between the lower and upper periodi
 boundaries. In 
utter,this 
orresponds to a �xed phase shift between the os
illations of neighbouring blades. Infor
ed response, it arises when the wakes and blades have di�erent pit
hes and therefore thereis a di�eren
e in the times at whi
h neighbouring wakes strike neighbouring bladesWhen the dis
rete equations of motion are linearised, one obtains a frequen
y-domainlinear version of the 
ow equation (2.2) and solid wall boundary 
ondition (2.3):(I�B) (Lu� s) = 0; (3.2)B u = b: (3.3)L is a 
ombination of the linearisation matrix �N=�U giving the sensitivity of the dis
retenonlinear residual N to 
ow perturbations, plus a 
omplex sour
e term due to the harmoni
unsteadiness. In the 
ase of for
ed response due to in
oming wakes, the wall velo
ity b iszero, and the sour
e term s is zero throughout the 
ow �eld ex
ept at the in
ow boundarywhere the spe
i�
ation of the in
oming wakes enters through the boundary 
uxes. In the
ase of 
utter, the wall velo
ity b is non-zero, and the use of a harmoni
ally deforming gridmoving with the blades leads to s being non-zero at all nodes [8℄.These linear equations are again solved using the �ve-stage Runge-Kutta s
heme togetherwith Ja
obi pre
onditioning and multigrid. Usually this 
onverges without diÆ
ulty, butproblems have been en
ountered in situations in whi
h the steady 
ow 
al
ulation itselffailed to 
onverge to a steady-state but instead �nished in a low-level limit 
y
le, oftenrelated to some physi
al phenomenon su
h as vortex shedding at a blunt trailing edge. The
orresponding instability in the linear 
al
ulation has been dealt with by the use of GMRES,with the usual multigrid solver being used as a very e�e
tive pre
onditioner, as shown inFigure 1.In aeroelasti
 appli
ations, the �nal output of the linear harmoni
 analysis is the worksum[2℄ whi
h is a 
omplex inner produ
t between a 
onstant ve
tor and the linear harmoni




4 Duta, Giles & Campobassosolution: w = gHu (where gH denotes the 
omplex 
onjugate transpose of g). The elementsof the ve
tor g are non-zero only at nodes on the blade surfa
e where g depends on themode of blade vibration. In a linear 
utter analysis, the worksum value is a measure ofthe me
hani
al work done on the vibrating blade by the aerodynami
 for
es generated bythe vibration itself. In the for
ed response analysis, the magnitude of the worksum value isdire
tly proportional to the amplitude of blade vibration indu
ed by the 
ow perturbations.4 Adjoint Harmoni
 AnalysisThe adjoint harmoni
 approa
h is founded on the observation that if Au = f thenw = gHu = gHA�1 f = �(AH)�1g�H f = vH f ; (4.1)where v is the solution to the adjoint systemAHv = g: (4.2)This adjoint approa
h to evaluating the worksum w is bene�
ial when there is one g, 
orre-sponding to a single vibration mode, but several di�erent f ve
tors, 
orresponding to di�erentin
oming wakes in the 
ase of for
ed response. In this situation, the usual dire
t approa
hwould require a separate linear 
al
ulation for ea
h wake, whereas the adjoint approa
h needsjust one adjoint 
al
ulation.To express the linear system of equations in the required form, we add Equations (3.2)and (3.3) to give �(I�B)L+B� u = (I�B) s+ b: (4.3)The 
orresponding adjoint system of equations is therefore�LH(I�B) +B� v = g; (4.4)sin
e the real matrix B is symmetri
. To implement the adjoint method, it is 
onvenient tosplit v into two orthogonal 
omponents 1 using the fa
t that B is idempotent (i.e. B2=B):v = vk + v?; vk = (I�B)v; v? = B v: (4.5)Multiplying Equation (4.4) by (I�B) yields the equation(I�B)LH vk = (I�B)g (4.6)whi
h 
an be solved together with the boundary 
onditionB vk = 0; (4.7)to determine vk. Multiplying Equation (4.4) by B yieldsv? = �BLH vk +Bg; (4.8)so v? 
an be 
al
ulated in a post-pro
essing step before then evaluating the worksum asw = vH f = vHk s+ vH?b: (4.9)1The reason for the 
hoi
e of subs
ript label is that v? is the part of v whi
h is orthogonal to thenull-spa
e of the matrix B, whereas vk is the part that lies within the null-spa
e.
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omponents of the 
at plate pressure jump due to wake intera
tionThis equation shows that vk gives the dependen
e of the worksum on the distributed harmoni
sour
e term s, whereas v? gives its dependen
e on the boundary velo
ities b.It is not obvious how best to solve the adjoint equations. Using the same iterative methodas for the nonlinear and linear equations (ex
ept with the transpose of the pre
onditioningmatrix) was found to work well for invis
id 
ows, but there were signi�
ant stability problemswith vis
ous 
ows. To over
ome these, Giles analysed the iterative evolution of outputfun
tionals su
h as the worksum produ
t. He found that the adjoint 
ode 
ould be designedto give exa
tly the same iterative history for the fun
tionals as with the linear 
ode, byproperly 
onstru
ting an adjoint version of the usual Runge-Kutta time-mar
hing pro
edure,and using adjoint restri
tion and prolongation operators for the multigrid [4℄. This guaranteesthat the stability and the iterative 
onvergen
e rate of the adjoint 
ode will be identi
al tothat of the linear 
ode, whi
h in turn is equal to the asymptoti
 
onvergen
e rate of thenonlinear 
ode.5 ValidationOne diÆ
ulty in the development of an adjoint 
ow 
ode is the la
k of test 
ases for validation.For the harmoni
 adjoint 
ode, the validation has been performed at two levels. At thelower level, ea
h subroutine has been 
he
ked for 
onsisten
y with its 
ounterpart in thelinear harmoni
 
ode [6, 5℄. At the higher level, it has been 
he
ked that the adjoint andlinear harmoni
 
odes produ
e the same value for the worksum output, to within ma
hinea

ura
y, at ea
h step of the iterative pro
ess. This exa
t equivalen
e is one advantage of thefully dis
rete adjoint approa
h, as opposed to the 
ontinuous adjoint approa
h in whi
h onedis
retises the adjoint partial di�erential equation.The linear harmoni
 
ode has itself been validated at a subroutine level by 
omparisonwith the subroutines in the nonlinear 
ode [6, 5℄. In addition it has been 
he
ked using arange of test
ases, starting with simple model problems su
h as invis
id 
ow over 2D 
atplate 
as
ades for whi
h there is an analyti
 solution [17℄. Figure 2 presents results for theunsteady intera
tion due to in
oming wakes from an upstream blade row. Validation of thevis
ous 
apabilities is based on ben
hmark experimental test
ases, su
h as the 11th Stan-dard Con�guration [3℄. Figure 3 shows that the amplitude of the linear pressure 
oeÆ
ientvariation agrees well with the measurements.
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Figure 3: First harmoni
 pressure variation for the 11th Standard Con�guration6 Example appli
ationThe adjoint harmoni
 algorithm is applied here to a realisti
 design s
enario to illustrate theeÆ
ien
y of the adjoint approa
h. The geometry is a high pressure turbine rotor subje
t tounsteady aerodynami
 for
es 
aused by in
ident wakes from an upstream row of blades. Thishas been previously analysed [15℄ to show good agreement in the for
ed response predi
tedby linear un
oupled and nonlinear 
oupled methods.The design task is to investigate the dependen
e of the for
ed vibration upon the shape ofthe in
oming wakes. In pra
ti
e, it is very diÆ
ult to signi�
antly redu
e the velo
ity defe
tin the wakes, but by 
hanging the three-dimensional shape of the upstream blades (e.g. bymoving the tip se
tion of the blade in the 
ir
umferential dire
tion while keeping the hubse
tion �xed, a pro
ess known as re-sta
king) it is possible to alter the time at whi
h thewake shed by the tip se
tion hits the rotor blade row, relative to that shed from the hubse
tion. Physi
ally, a wake hitting the blade at the same time at di�erent radial se
tions willusually produ
e the maximum stru
tural response, whereas allowing for time delays theremay o

ur a phase 
an
ellation between the for
es at di�erent radial lo
ations leading to aredu
ed response.Mathemati
ally, the e�e
t of re-sta
king is 
ontained in the worksum 
al
ulation. Theadjoint analysis 
an be used to determine the worksum values 
orresponding to a set ofdi�erent in
ow wake boundary 
onditions in order to identify a minimum response. In thisexample, these boundary 
onditions 
ome from the same baseline 
orresponding to the 
urrentdesign of the upstream blades and the di�eren
e between them is a 
omplex phase shift whi
his de�ned to vary linearly with radius from zero at the hub to a maximum value at the tip. This
orresponds to a linear re-sta
king, leaning the entire blade in the 
ir
umferential dire
tion.Figure 4 shows the magnitude of the worksum 
orresponding to the primary torsionalmode 
omputed as a fun
tion of the maximum phase shift due to re-sta
king. It indi
atesthat within the range being 
onsidered, whi
h is thought to be appropriate, the greater themagnitude of the phase shift, the greater the degree of phase 
an
ellation between di�erentparts of the blade and hen
e the smaller the worksum.The results for the full range of phase shifts were obtained from a single adjoint 
al
ulation.
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Figure 4: For
ed response magnitude versus maximum re-sta
king phase shift.If the standard linear harmoni
 approa
h were used instead, ea
h result would require aseparate linear 
al
ulation sin
e it 
orresponds to a di�erent set of in
ow boundary 
onditions.As a 
he
k, linear 
al
ulations have been performed for a variety of points and they produ
edidenti
al values for the worksum output.7 Con
lusionsThis paper has presented what is thought to be the �rst appli
ation of adjoint methods to thelinearised analysis of periodi
 unsteady 
ows. The 
urrent appli
ation is to a turboma
hinerydesign problem involving the tailoring of in
oming wakes to redu
e the level of for
ed responseblade vibration. However, a future appli
ation will be to 
utter predi
tion and the design ofblades with improved 
utter margins.The development of the harmoni
 adjoint method, and parallel work on a steady-stateadjoint method, has also involved advan
es in the methodology for fully-dis
rete adjointmethods. This in
ludes the treatment of strong wall boundary 
onditions for node-baseddis
retisations; adjoint iteration methods giving exa
tly the same iterative 
onvergen
e asthe 
orresponding linear method; and te
hniques for the validation of the adjoint solver by
he
king its exa
t equivalen
e to the linear solver.A
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