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This paper presents a convergence analysis of Crank—Nicolson and Rannacher
time-marching methods which are often used in finite difference discretizations
of the Black—Scholes equations. Particular attention is paid to the important
role of Rannacher’s startup procedure, in which one or more initial timesteps
use backward Euler timestepping, to achieve second-order convergence for
approximations of the first and second derivatives. Numerical results confirm
the sharpness of the error analysis which is based on asymptotic analysis of the
behavior of the Fourier transform. The relevance to Black—Scholes applications
is discussed in detail, with numerical results supporting recommendations on
how to maximize the accuracy for a given computational cost.

1 Introduction

Many applications in mathematical finance require the numerical solution of
variants of the Black—Scholes equation (Wilmott er al 1995)

which is solved backwards in time, from a given payoff at the terminal time
t =T, to an initial time ¢ = 0. Switching to the new coordinate x =log S gives
the transformed equation
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Using a uniform grid with spacing / and timestep k, second-order central space
differencing and Crank—Nicolson time integration results in the discrete equations

I+ %D)V;’“ =( —3D)V!
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where

with 8)% and 87, being the standard second difference and central first difference
operators, respectively.
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For European call options, the payoff function at the terminal time is
V(S, T)=max(S — K, 0)

The top-left plot in Figure 1 shows the numerical solution V (S, 0) at time t =0
for parameter values r =0.05, 0 = 0.2, K =1, T = 2. The agreement between
the numerical solution and the analytic solution (Wilmott ez al 1995) appears quite
good, but the other two left-hand plots show much poorer agreement for the finite
difference approximations to A =9V/dS and I' = 3>V /3S>. In particular, note
that the maximum error in the computed value for I" occurs at S = 1, which is the
location of the discontinuity in the first derivative of the initial data.

Figure 2 shows corresponding results for a digital call option for which the
payoff is

V(S,T)=H(S —K)

where H (x) is the Heaviside function. For this case, the accuracy of the Crank—
Nicolson approximation is noticeably poorer, due to the reduced regularity in the
initial data.

The left-hand plots in Figure 3 show the behavior of the maximum error for
the European call option as the computational grid is refined, keeping fixed the
ratio A = k/h. It can be seen that the numerical solution V; exhibits first-order
convergence, while the discrete approximation to A does not converge, and the
approximation to I' diverges. The left-hand plots in Figure 4 show that for the
digital call option there is no convergence even for the option value V.

At first sight, this may appear surprising. Textbooks introducing the Crank—
Nicolson method for parabolic equations almost always describe it as an uncon-
ditionally stable, convergent approximation. However, this statement is a little
misleading in its simplicity. It is unconditionally stable in the L, norm. This,
together with consistency, ensures convergence in the L, norm for initial data
which lies in L, (Richtmyer and Morton 1967), although the order of convergence
may be less than the second order achieved for smooth initial data. For example,
the L, order of convergence for discontinuous initial data is % With the European
call Black—Scholes application, the initial data for V lies in L;, as does its first
derivative, but the second derivative is the Dirac delta function which does not
lie in L». This then is the root cause of the observed failure to converge as the
grid is refined. Furthermore, it is the maximum error, the L, error, which is most
relevant in financial applications.

Rannacher (1984) analyzed this problem from the perspective of Ly conver-
gence of convection—diffusion approximations with discontinuous initial data.
His objective was to recover second-order convergence in the context of
Crank—Nicolson time-marching (he also considered higher-order time integration
schemes), and using energy methods he proved that this could be achieved by
replacing the Crank—Nicolson approximation for the very first timestep by two
half-timesteps using backward Euler time integration. This solution, often referred
to as Rannacher timestepping, has been used with success in approximations of
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FIGURE | V, A and T" for a European call option.
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FIGURE 2 V, A and I for a digital call option.
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FIGURE 3 Grid convergence for a European call option.
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FIGURE 4 Grid convergence for a digital call option.
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the Black—Scholes equations (Ikonen and Toivanen 2004; Pooley et al 2003a,
2003b; Raahauge 2004; Zvan et al 2003). The right-hand plots in Figures 1-4
show that replacing the first two Crank—Nicolson timesteps by four half-timesteps
of backward Euler, for which

I+ 3Dy =yr

results in second-order convergence for V, A and I
As an example to show that the behavior of these simple Black—Scholes
approximations is representative of more realistic multi-factor applications, Fig-
ure 5 shows similar results for Heston’s stochastic volatility model (Heston 1993)
for which the partial differential equation is
v , 3%V P2V 1, 3V

aVv av 1
—=rV—-rS——«x@ —-v)— — —v§S"— — pwvS [N
at aS av 2 952 aSov 2 9?2

In two dimensions, the standard Crank—Nicolson method would require the
solution of a very large linear system of equations, making the computational
cost approximately quadratic in the number of grid points. This is avoided here by
using the Alternative Direction Implicit (ADI) method which is a factored approx-
imation to the Crank—Nicolson method (Duffy 2006) but has a computational
cost that is proportional to the number of grid points, as in one dimension. To
maintain second-order accuracy it is necessary to use the Craig—Sneyd treatment
of the cross-derivative term (Craig and Sneyd 1988). The numerical results
are for a European call option using the following parameter values: r = 0.05,
k=2,0=0.04, ©=025 p=-0.5, K=1, T =2. The analytic reference
solution is obtained using numerical integration (Kahl and Jackel 2005). The error
plots, which show the maximum error along the line v = 6, are very similar to
those obtained for the Black—Scholes equation, with the Rannacher timestepping
restoring second-order accuracy for V, A and I'.

The purpose of this paper is to explain the behavior of Rannacher timestepping
by performing a detailed error analysis of a simpler problem, the discretization
of the constant coefficient one-dimensional convection—diffusion equation. This
reveals that four half-timesteps of backward Euler time-marching is the minimum
required to recover second-order convergence for these two problems. The use of
more than four half-timesteps will lead to an increase in the overall error, due to
the lower-order discretization error inherent in the backward Euler discretization,
and therefore four half-timesteps can be regarded as optimal.

The approach which is followed is similar to that of Giles (2004), performing
an asymptotic analysis of the behavior of the Fourier transform and then using this
to bound the error resulting from the inverse transform (Strang 1986). Numerical
results confirm the sharpness of the error bounds that are derived. A number
of extensions to the analysis are discussed and investigated numerically, and
guidance is offered to practitioners wanting to achieve the greatest accuracy for a
given computational cost.
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FIGURE 5 Grid convergence for a European call option with the Heston model.
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There are other ways of obtaining high accuracy implicit solutions. One option
is to follow the approach of Broadie and Detemple (1996) and replace the first
timestep calculation by the specification of an approximate analytic solution at
the end of the first timestep. This yields the same improvement in accuracy
as Rannacher timestepping, provided the approximate solution is sufficiently
accurate. However, when generalizing this approach to multi-factor models with
general payoffs, simple analytic approximations exist for some problems but
not for others. When developing a pricing engine for a large class of models,
Rannacher timestepping offers both simplicity and generality.

2 Model problem and discretization

The model problem to be analyzed is the convection—diffusion equation

v n dv 9%
J— aqa— = ——
ot ax  0x2

e))

over —oo < x < oo and 0 < ¢ < 1. The generalization to non-unit diffusivity and
terminal times other than # = 1 will be discussed later.
If v(x, t) satisfies this equation subject to the initial data

v(x, 0) = max(x, 0)

then its second derivative

8%v

0x2

satisfies the same differential equation subject to the initial data

u

u(x,0)=24(x)
where & (x) is the Dirac delta function. Defining the Fourier transform pair

oo .
u(k, t) :/ u(x, t)e ™ dx

—00

1 e .
u(x,t):z—/ ulk, t)e"* dr

T J—0o
then the Fourier transform of Equation (1) yields
du

— = —(iak + k7

dr

subject to initial data #(«, 0) = 1. The solution to this is

Tk, 1) = exp(—(iak + k>)1)

1 ox (_(x—at)2>
Jart P 4t

and hence

u(x,t)=
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The Crank—Nicolson discretization of Equation (1) on a uniform grid with
spacing /h and timestep k is

1 n+1 __ 1 n
(I+§D)Vj _(I—QD)VJ- 2)
where ‘ .
B 5 T _ _a
D—_d8x+§82x, d—ﬁ’ r_F

with 8)% and &, being the usual second difference and central first difference oper-
ators, respectively. The corresponding half-timestep backward Euler discretization
used in the Rannacher startup is

n+1/2

(I +3D)V; vy (3)

If V}’ satisfies these equations with initial data

V]Q =max(x;, 0)

then its divided second difference

n__ 13—-2¢2y/mn
Ul =h7282V]

satisfies the same difference equations subject to the Dirac initial data
=t j=0

Ud=n""s;0=
/ 0 {o, j#0

The objective of the error analysis will be to quantify the error U ]N —u(xj, 1) for
N=1/k.
3 Fourier analysis

Using the mixed discrete/continuous Fourier transform pair (Strang 1986)

g

1 ~
n_ _ n ..
Uj =5 ] U"(0) exp(ijo) do

o0
U"@)=h Y U"exp(—ijo)

j=—00
the Fourier transform of Equation (2) gives

1o L 21
1— 3ir sin @ — 2d sin §9An

Urtl —
" 14 3irsing +2dsin®* 30 "

for n > R, where R is the number of initial Crank—Nicolson timesteps replaced by
2 R half-timesteps of backward Euler time integration, while for n < R the Fourier
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transform of Equation (3) gives

1

ﬁn—H — u"
(1 + Lirsin® + 2d sin* £6)2 "

m

These can be combined to give
U ) =105 0)0°0)
where

21(0) = (1 — 3ir sin @ — 2d sin® 30)(1 + %ir sin 6 + 2d sin* 36)"
22(0) = (1 — Lirsin — 2d sin® 1)~ (1 + Lir sin @ + 2d sin* 16)~"

For the Dirac initial data, 17 0 — 1 and hence at the final iteration level N
(assumed to be greater than R)

1 T .
U = o 2N (©)ZR©6) 7 do “
—TT

By making the substitutions & = «h, x; = jh the integral can also be expressed as

1 w/h
uvN

N R irx
i =3 o 2y (kh)z5 (kh) e die

This is to be compared to the analytic solution u(x, 1) for which

1 o0 .
ulx, 1) =— / uk, 1) e"* dr
27 J_0o
with
Wk, 1) = exp(—iak — k2)

Figure 6 plots comparisons between the numerical and analytic solutions to the
convection—diffusion problem with @ = 2 at t = 1 for two grid resolutions 7 = 1/3
for the upper half of each figure, and & = 1/6 for the lower half. The timestep is
chosen so that A = k/h = 3/4 in each case. The plots on the left are for Crank—
Nicolson without any Rannacher startup, whereas the plots on the right are for
R =2, replacing the first two Crank—Nicolson timesteps by four half-timesteps of
backward Euler integration.

Looking at the results in physical space (ie, the plots of U and u versus x),
the main feature to note is the high-wavenumber error near x = 0 for the Crank—
Nicolson time-marching. Its width appears proportional to 4, while its magnitude
appears proportional to 2~ !; this will be confirmed by the asymptotic analysis.

Looking at the comparison in Fourier space (ie, the plots of |ﬁ | and [u]
versus 6) the main feature to note for the Crank—Nicolson results is that there
appear to be three regions: one on the left of width proportional to /# in which

Volume 9/Number 4, Summer 2006
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FIGURE 6 Numerical solution for the convection—diffusion equation with a = 2.
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there is very good agreement between the numerical and analytic solution, one
on the right with a width independent of 4 in which # is extremely small but
U is not, and a central region in which both @ and U are small. This separation
into three regions is the basis for the asymptotic analysis, which considers a low-
wavenumber range defined by |«| < A~"™, a high-wavenumber range defined by
h™" < |k| and the intermediate range A~ < |k| < h™". The constants m and r
satisfy the constraints 0 < m < % and % < r < 1. The reasons for these constraints
will become clear in the asymptotic analysis.

The convergence analysis considers the limit 2, k — O with A = k/ & held fixed.
The reason for this choice of limit is that the truncation error due to the spatial
central differencing and the Crank—Nicolson time integration O (k> + h?), and
so keeping k = O (h) keeps the spatial and temporal approximation errors of the
same order. We now analyze the Fourier error U — % in each of the three regions.

PROPOSITION 3.1 (Low-wavenumber region) For |k| <h™™, ash — QO with > =
k/ h held fixed,

UN (k) — ik, 1) = h? exp(—iak — kD) {p(k, a, », R) + O(h(k> + k°))}
where
plk,a, ., R) = %ialc3 + %K4 - ﬁkzﬁ(ia + lc)3 + %szkz(ia + K)2
PROOF Expressing each variable as a function of 4,
0=«h, N=
a Taylor series expansion gives

log ﬁN:Nlogm + R log 22
= —iak — k> 4+ h’p(k,a, », R) + O(K* (> + k%))

The restriction that m < % ensures that the 4%« © term and the #3«° remainder both
tend to zero as 7 — 0. Hence,

oV = exp(—iak — /cz){l + th(/c, a, i, R) + O(h3(/<3 + /<9))}
and so we obtain the result in the Proposition 3.1. Il

PROPOSITION 3.2 (High-wavenumber region) For h™" < |k|, as h — O with A =
k/ h held fixed,

. K2R 1
UN = (DN R ex (—7)0 + 0(h6™2)
(22 sin® £6)2R P\ in? 1o

Volume 9/Number 4, Summer 2006
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PROOF z;(0) can be re-expressed as

21(0) = (1 — 3ir sin @ — 2d sin® 30)(1 + Jir sin 6 + 2d sin* $6)~!

( ! " ot 16 1)( LT t19+1>_1
= —————— —cot56 — ———— + —cots
2dsin® 1o 2d 7 2dsin® 1o 2d 7

— —1 asd— o0
and similarly

1 ir -1
22(0) = (2d sin? le)—2<7 — — cotig — 1)
: 2dsin 1o 2d 2

( L0 t19+1>_1
X | ———F—— + — cot 5
2dsin® 1o 2d 2

— —(2dsin”* $0)™* asd — oo

Hence, expressing d and N as functions of £ as in the proof of Proposition 3.1,
Taylor series analysis gives

~ h 1 h
log{(—DN=RUN} =2R lo — +0( )
el } . 22 sin? %9 22 sin2 %9 sin? %9

The restriction that r > % ensures that the remainder term tends to zero as 7 — 0,

and therefore we obtain the result in the proposition. ]

PROPOSITION 3.3 (Eltennediate region) For h™™ < |k| <h™", as h — 0 with
L =k/h held fixed, UN (k) = 0o(h9), for any q > 0.
20
s
, (- ds)? +r2s(1 —s)
21" = (14+ds)2+r2s(1 —s)

Differentiating, one finds that d|z1|?/ds = 0 when s> = (d> — r?)~!. Substituting
r =ahk, d =X\/h, this shows that, as 7 — 0, |z;| has a maximum at s =0, 1,
and a minimum at s &~ d~!, corresponding to x = O (h~'/?) which lies within the
intermediate region. Noting that, for any ¢ > 0, the first two Propositions prove
that |z1|Y = o(h?) at both k = h™™ and x = h™~", it follows that |z;|Y = o(h?)
\/V\ithin the entire intermediate region. Since |z{v z§| < |z1IN R, it follows that
UVN = o(h?) for any g > 0. O

PROOF Defining s = sin

Defining
Elow — p,2 exp(—iak — Kz)p(K, a, i, R)

. h2R 1
’E'\hlgh — (—I)N_R Xp( )

e —
(2 sin? %Q)ZR 22 sin? %9

and
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then since E°% « Ehigh i the high-wavenumber region, and Ehigh « oW ip the
low-wavenumber region, the results above can be combined to give

UN @) — ik, 1)~ E° + EMeh || <7/h

The inverse Fourier transform then gives

high

N . ~ rlow
UN —u(xj, )~ EM™ + E

where the low-wavenumber error is

Elov — hZ{ Ra% e (xj _ a)
/ 82 V2

B 2a + a’)\? + 6Ra)? NG <xj — a)

48 V2
48+/2 V2
a5 (%ima
32 2
A2 Xi—a
e ()
96+/2 V2

with N (x) being the mth derivative of the normal distribution with zero mean
and unit variance, and the high-wavenumber error is

high - — _

where
h w/h ei/(xj 1
et [ (L Y
Y —x/h sin*R %9 P 22 sin? %0

1 b4 el]9

=— ———exp|l ————— ) df
27 J_; sin*R %9 p( A2 sin? %0)
1 (7 cosjo 1

:—/ —_— 4R]1 exp(——2 —7 )d9
T Jo sin™" 560 A% sin” 50

high clearly has a width of O(h), and has a maximum magnitude at j = 0 where

E

J
xj = 0. This explains the observed behavior in Figure 6. The integral for j =0
can be evaluated analytically (see Appendix A) giving

2R
high, | phigh,  ;2R—1 g d
mjax|Ej |=1Ey" |=h 21) L

erfc(\/E)
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104 M. B. Giles and R. Carter

where 8 = A~2 and erfc(x) is the complementary error function,

fe(x) = — /oo —'d
eric(xX ) = —— € S
NER

The fact that the low-wavenumber error is O (h?) and the high-wavenumber
error is O(h*R®~1) is confirmed by the results in the upper plots of Figure 7
which have convergence results for the convection—diffusion equation with a = 2.
It can be seen that for the standard Crank—Nicolson time-marching, the results
exhibit O (h?) convergence until i reaches a sufficiently small value that the
O (h~") high-wavenumber error becomes dominant. The plots show the sensitive
dependence of the high-wavenumber error on the value of A. For large values of
A, erfcA~!) 2~ 1 and so E?lgh becomes significant for quite large values of A.
On the other hand, for small values of A, erfc(k_l) is extremely small, and so
E?lgh does not become dominant until % is extremely small. With the Rannacher
startup with four half-timesteps of backward Euler integration (R = 2), the high-
wavenumber error is O (h>) and so the low-wavenumber error remains dominant

for all h. The sharpness of the error analysis is demonstrated by the lower plots
high

that compare the numerical error with the maximum magnitude of E}OW and E i

4 Extensions
4.1 Alternative initial data

The analysis so far has assumed that there is a grid point at x = 0, so the grid is
perfectly aligned with the discrete Dirac initial data, but if the grid is not perfectly
aligned care must be taken in representing the initial data, as discussed by Pooley
et al (2003).

If the grid points x; are still taken to be located at j&, but instead of ; taking
integer values it is j 4+ « which takes integer values (with 0 < o < 1) then the
appropriate discretization of the Dirac initial data is

(1—-a)h™ !, j=—a
U?: ah™ !, j=1—«
0, otherwise

This gives ' _
Ur(y)l — (1 _ (X) e—l()l@m + o el(]—a)em

Putting 6,,, = kh, an asymptotic expansion with respect to & gives
Ud =1+ 0(*h?)

which leads to the result that the low-wavenumber error remains second order.
It can also be shown that the convergence order of the high-wavenumber error is
also unaffected.
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FIGURE 7 Grid convergence for the convection—diffusion equation with a = 2.
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TABLE | Order of convergence of the high-wavenumber error using Rannacher
timestepping with 2R half-timesteps.

v A r
European call 2R+1 2R 2R — |
Digital call 2R 2R — | 2R -2

Although the focus of our analysis so far has been on Dirac initial data, there
are other sets of initial data that are also of interest. One is the first difference of
the discrete Dirac initial data; this is relevant to the approximation of I" for the
digital option. Another is a discrete equivalent of H(x) — %, where H (x) is the
Heaviside step function; this is relevant to the approximation of V for the digital
option, and A for the European option.

For both of these sets of alternative initial data, the low-wavenumber error will
still be O (h?%). However, the high-wavenumber error will be one order worse in the
first case, O(hZR_Z), where R is again the number of Crank—Nicolson timesteps
replaced by two half-timesteps of backward Euler integration, and one order better
in the second case, O (h?R).

Table 1 summarizes the consequences of the analysis and its generalizations
for the convergence of the high-wavenumber error in computing V, A and I’
for European and digital call options. The low-wavenumber error is O(h?) in
all cases, and using R =2 ensures that the high-wavenumber error is also at
worst O (h?).

4.2 Diffusion coefficient and terminal time

The model problem that has been analyzed has unit diffusivity, and the error is
analyzed at the terminal time ¢ = 1. Suppose now that the convection—diffusion
equation is

dv av 8%v

g —e—

ot 0x 0x2
and the error is to be analyzed at the terminal time ¢ =7. The non-
dimensionalization
k h

[*:—’ _x*: k*: s h*:

T JeT
k
)L*:k_zk i:)L i, at=a Z
h* h\'T VT V e

reduces the more general problem to the one that has already been analyzed.
Applying this non-dimensionalization to the Black—Scholes calculations in the
introduction, with € = %02, then the calculations for A =2, 3, 4, 5 correspond to
A*=0.2,0.3,0.4, 0.5, respectively.
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Having determined that A* is the key non-dimensional parameter, the next
question is whether there is an optimal value for this parameter providing the
maximum accuracy for a given computational cost. The error analysis gives a
leading-order error of the form

E = ah*? + bk*?

while the computational cost is proportional to the product of the number of grid
points and the number of timesteps, so

Hence, for a given computational cost C,
ah*™  bk*

E=h*k*<k—* + o

) - %(ak*_l 4 bA%)

Too small a value for A* gives a large error due to large 4*, while too large a
value of A* gives a large error due to large k*. This tradeoff is clearly seen in
the results shown in Figure 8. The curves labeled RT2/2 present the maximum
errors for the European and digital call options as a function of A*, keeping
fixed the computational work by increasing & as k is decreased. The optimum
is seen to be around A* = 0.5. The curves labeled CN correspond to the results
given by the standard Crank—Nicolson method. For small values of A* these give
more accurate results because the Rannacher timestepping introduces additional
low-wavenumber errors. However, as A* increases and erfc(1/ \/)F) is no longer
extremely small, the high-wavenumber error becomes dominant and the Crank—
Nicolson error becomes very large.

4.3 Alternative Rannacher treatments

Although Rannacher (1984) originally suggested the approach analyzed here,
namely replacing Crank—Nicolson timesteps by two backward Euler half-
timesteps, there are other options.

One could replace the Crank—Nicolson timesteps by full timestep backward
Euler approximations, but in this case one would need to replace the first
four Crank—Nicolson timesteps to get the same improvement in the order of
convergence, and the larger timestep in the backward Euler time integration would
increase the low-wavenumber error.

A better option is to replace the first Crank—Nicolson timestep by four quarter-
timesteps of backward Euler time integration. This gives the same desired
improvement in the order of convergence, but with a reduced low-wavenumber
error. The curves labeled RT1/4 in Figure 8 present the results obtained in this
way. The results are clearly superior in all cases except perhaps for the digital
option I' for which there is a second-order high-wavenumber error in addition to
the second-order low-wavenumber error, and RT1/4 does not eliminate the high-
wavenumber error as effectively as RT2/2.
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FIGURE 8 Comparison of four numerical methods: Crank—Nicolson (CN), Ran-
nacher timestepping with four half-timesteps (RT2/2) with four quarter-timesteps
(RT1/4), and with four quarter-timesteps and non-uniform timesteps (variable).
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4.4 Non-uniform timesteps

Another possibility is not to use uniform timesteps, but instead use smaller
timesteps initially. Given the existence of an optimal value for A*, one way
of choosing the timestep might be to keep fixed the value of A*(¢) based on
the current time ¢ rather than the final time 7. This requires k o< 4/ which is
accomplished by defining
n?
knztn+l_tnv tn:mT

sothat7g =0, ty =T and k, X n X /1.

The curves labeled “variable” in Figure 8 show that this does not produce very
good results. The problem is that, as with the basic Crank—Nicolson method, the
error rises very sharply when A* increases. This is because the very small initial
timesteps greatly reduce the effectiveness of the backward Euler smoothing of the
high-wavenumber error. In fact, additional results, backed by numerical analysis,
show that one does not obtain second-order convergence in any of the cases. This
contrasts slightly with the results of Forsyth and Vetzal (2002) who found that for
American options this variable timestep gives second-order convergence for the
option value whereas the uniform timestep does not, probably due to its inadequate
resolution of the initial behavior of the exercise boundary.

4.5 Richardson extrapolation

The final extension to be considered is Richardson extrapolation (Dahlquist and
Bjorck 1974; Geske and Johnson 1984). Given that the leading-order term in the
low-wavenumber error is of the form

E)® = ah® + bk*

then if one performs calculations with spacing 24 and h, keeping the ratio A fixed,
then
AEY — Eph, =0

low

Hence, the extrapolated solution
Uext = %Uh - %Uzh

will have a low-wavenumber error that does not have a leading second-order term.

Figure 9 shows the improved accuracy of this extrapolated solution. Further
numerical analysis reveals that the next order low-wavenumber error term is due to
the Rannacher time-marching and is proportional to Rk>. This explains the third-
order convergence that is apparent in some of the plots for A* = 0.5. For A* = 0.2,
k3 is sufficiently small so that the third-order error is relatively insignificant. The
second-order convergence of the digital option I'" is due to the high-wavenumber
error which is second order in this case and is not cancelled by the extrapolation
procedure.
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FIGURE 9 Convergence comparison for Rannacher time-marching using four
quarter-timesteps, with and without Richardson extrapolation.
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5 Conclusions

In this paper we have analyzed the convergence of Crank—Nicolson approxima-
tions of the one-dimensional convection—diffusion equation, with and without the
Rannacher startup procedure in which an initial R Crank—Nicolson timesteps are
each replaced by two half-timesteps of backward Euler integration. The analysis
proves, and numerical results confirm, that there is a low-wavenumber error of
O (h?), and a high-wavenumber error of O (h*8~1). Hence R = 2 is the minimum
to give O (h?) convergence, and it in general it is the optimum since larger values
will increase the low-wavenumber error.

In considering extensions to this analysis and its relevance to Black—Scholes
applications, it was shown that it is better to replace just the first Crank—
Nicolson timestep by four quarter-timesteps of backward Euler time integration.
This reduces the low-wavenumber error introduced by the Rannacher startup. In
addition, the accuracy is maximized for a given computational cost by choosing
the uniform timestep k and grid spacing % so that

A*—k o?
T n\2r

lies between 0.5 and 1.0. Using a variable timestep does not improve the accuracy,
and in fact spoils the second-order convergence. The final comment is that
numerical results show that very significant improvement in accuracy (or decrease
in computational cost) can be achieved using Richardson extrapolation.

Appendix A Evaluation of the integral

)
0=— exp| —————
7 Jo P Azsinz%e

Making the substitutions ¢ = cot %9 and @ = A~!, one obtains

Consider the integral

I 2/00 ! (—a?(> + 1)) dt
= — exXp(—o
0 o 2+1°7P
and hence
dl 4 oo 2
0 _ __Ol exp(—az(tz +1)df=——— exp(—az)

do — w 0 VT
Since Ip — 0 as @ — 00, integration gives
2 * 2 -1
= ﬁ - exp(—s°) ds =erfc(A™)
where erfc(x) is the complementary error function.
Switching to a new variable 8 = A~2 = &2, then Io(B) = erfc(y/B), and

Ix(B) 1 /” 1 ( B ) W d*R 1y
= — exXpl| — =
. 21 J_5 (sin 16)2R P\ sin? 1o dp2r
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